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Abstract The Trinity River system provides a natural laboratory for linking fluvial morphodynamics to
stratigraphy produced by sea-level rise, because the sediments occupying the Trinity incised valley are
well constrained in terms of timing of deposition and facies distribution. Herein, the Trinity River is modeled
for a range of base-level rise rates, avulsion thresholds, and water discharges to explore the effects of
backwater-induced in-channel sedimentation on channel avulsion. The findings are compared to observed
sediment facies to evaluate the capability of a morphodynamic model to reproduce sediment deposition
patterns. Base-level rise produces mobile locations of in-channel sedimentation and deltaic channel
avulsions. For scenarios characteristic of early Holocene sea-level rise (4.3mmyr�1), the Trinity fluvial-deltaic
system progrades 13myr�1, followed by backstepping of 27myr�1. Avulsion is reached at the position of
maximum sediment deposition (located 108 km upstream of the outlet) after 3,548 model years, based on
sedimentation filling 30% of the channel. Under scenarios of greater base-level rise, avulsion is impeded
because the channel fill threshold is never achieved. Accounting for partitioning of bed-material sediment
between the channel and floodplain influences the timing and location of avulsion over millennial time
scales: the time to avulsion is greatly increased. Sedimentation patterns within the valley, modeled and
measured, indicate preference toward sandy bed material, and the rates of deposition are substantiated by
previous measurements. Although the results here are specific to the Trinity River, the analysis provides a
framework that is adaptable to other lowland fluvial-deltaic systems.

1. Introduction
Morphodynamic models of fluvial systems have been used to evaluate processes influencing channel evolu-
tion, by coupling sediment transport and fluid-flow properties. Recently, such models applied to lowland riv-
ers nearing a receiving basin have modified the assumption of uniform flow in order to explore how
nonuniform, backwater conditions affect the timing and magnitude of sediment transport, channel filling,
and avulsion frequency and location [Parker, 2004; Hoyal and Sheets, 2009; Chatanantavet et al., 2012;
Lamb et al., 2012; Nittrouer et al., 2012; Ganti et al., 2014].

For example, Jerolmack and Swenson [2007] proposed that the initiation of backwater regime establishes
delta sedimentation and sets the location of distributary channel forming avulsions. Nittrouer et al. [2012]
modeled channel sediment deposition within the backwater region of the lowermost Mississippi River, not-
ing that the preferential region of sediment deposition coincides with the location of five major Holocene
avulsions and higher rates of channel lateral migration. Lamb et al. [2012] explored the effects of hydraulic
drawdown associated with flood-water discharge events connected to an expanding river-mouth plume,
showing how this effect could produce channel bed sediment erosion within the lowermost reaches of the
Mississippi River. Chatanantavet et al. [2012] expanded on this study by implementing variable water dis-
charge conditions within the modeling framework, which modifies the location of maximum backwater-
induced sedimentation rates for the Mississippi River. Chatanantavet et al. [2012] also adapted their model
to address the timing of measured Holocene avulsions for the Mississippi system. Most of these previous stu-
dies presume a condition of stable base-level and no floodplain-channel sediment exchange, which may be
appropriate over the late Holocene and time scales of a few centuries [Lamb et al., 2012; Nittrouer et al., 2012;
Ganti et al., 2014]. However, during the early and middle Holocene, fluvial-deltaic systems would have been
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influenced by rapidly changing base-level conditions that likely exerted an important influence on
backwater-induced sedimentation.

Herein, a numerical model is developed to evaluate a fluvial-deltaic system undergoing transgression due to
base-level rise. The central hypothesis is that because morphodynamics of a fluvial system nearing the receiv-
ing basin are sensitive to base-level, there will be important spatiotemporal adjustments to sediment trans-
port rates, which in turn modify sediment depositional patterns. In essence, base-level rise will produce
accommodation space that is filled by backwater-induced sedimentation. Additionally, because the time
scale of early and middle Holocene transgression is long (several thousand years), it is necessary to account
for sediment partitioning between the channel and adjacent floodplain, because such exchange processes
occur over comparable time scales [Lauer and Parker, 2008a, 2008b, 2008c].

Sea-level rise under conditions of sufficiently low sediment supply increases accommodation space and
lends to development of backstepping fluvial-deltaic stratigraphy. The preservation of these deposits is ham-
pered due to transgressive ravinement, which erodes and significantly modifies coastal deposits. However,
underfilled incised valleys that are characterized by bays—for example, those found for the modern northern
Gulf of Mexico (e.g., Galveston, Sabine, and Mobile)—have a higher preservation potential because the
deposits filling the topographic low of a valley are relatively confined and protected from transgressive ravi-
nement [Thomas and Anderson, 1988]. The stratigraphy of incised valleys is therefore useful for assessing
fluvial-deltaic sedimentation processes during periods of transgression. For example, previous research from
Galveston Bay, Texas, USA (Figure 1), collected seismic data and sediment cores to evaluate the Holocene
record for the filling of the Trinity incised valley system, where the timing and spatial patterns of sedimentary
facies are well constrained [Anderson et al., 1992, 2008; Thomas and Anderson, 1994; Rodriguez et al., 2005;
Simms et al., 2006].

Our study leverages this extensive research on the stratigraphy of the Trinity River system, in order to inform
and validate a morphodynamic model that replicates the operation of fluvial-deltaic sedimentation during
transgression (sections 2.1 and 2.2). The most basic information required to properly constrain a model is
available, including age, distribution, and facies of accumulated sediment, the morphology of the valley,
and local sea-level conditions during the Holocene (Figures 1–4) [Anderson et al., 2008; Milliken et al., 2008].
These data afford the opportunity to link morphodynamic processes operating under the influence of trans-
gression to sediment deposition patterns and the production of stratigraphy, by comparing predicted pat-
terns of deposition to the measured sedimentary facies. Although applied to the Trinity River, the model
developed here provides a general framework for predicting facies patterns for other fluvial-deltaic systems.

The equations used herein to model morphodynamic interactions of base-level rise and channel-floodplain
exchanges have been developed over decades of previous research [De Vries, 1965; Parker et al., 1998a,
1998b, Parker, 2004; Parker et al., 2008a, 2008b]. The contribution of this study lies in the application of such
equations to evaluate the combined effects of base-level rise and channel-floodplain sediment partitioning
on the spatiotemporal development of fluvial-deltaic sedimentation, and the tendency of these processes
to produce channel avulsions. Since the modeling framework is paired with the extensive data of the incised
valley stratigraphy of the Trinity River, the location is ideal to test the model outcomes.

2. Background
2.1. Trinity River and Galveston Bay

High-resolution seismic data produced by sparker and boomer systems have been used to construct a
detailed map of the sedimentary facies associated with the Trinity incised valley [Anderson et al., 1992;
Thomas and Anderson, 1994]. Combined with drill cores, the patterns of the valley infill for this system have
been addressed by numerous researchers [e.g., Rodriguez et al., 2005; Simms et al., 2006; Anderson et al., 2008].

The Trinity River (Figure 1) incised valley was down cut during the previous falling stage in sea level during
marine oxygen isotope stage (MIS) 5–3, culminating in the 22–17 ka before present lowstand [Simms et al.,
2007]. A prominent surface of erosion, the MIS 2 Sequence Boundary, demarcates the base of the valley
and extends seaward across the continental shelf [Simms et al., 2007]. At the modern coastline, the valley
is approximately 30–40m deep, although much of this relief has been infilled with sediment. The terraced
cross-sectional profile likely reflects the episodic nature of sea-level fall during the regression event
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(Figure 2) [Rodriguez et al., 2005]. Subsequently, the Trinity system responded toMIS 2 Holocene sea-level rise by
aggrading and infilling its valley, beginning around 17 ka before present [Anderson et al., 2008], when the rate of
sea-level rise was approximately 10mmyr�1 [Bard et al., 1996]. A rapid transition from fluvial to bayhead delta
sedimentation indicates a conspicuous response to base-level rise (Figure 3) [Anderson et al., 2008].

The Trinity incised valley system is considered underfilled, based on the existence of Galveston Bay, and
because of the exposure of Deweyville (Pleistocene-age) terraces that contain the modern Trinity River allu-
vial valley upstream of Galveston Bay (Figure 1) [Failing, 1969; Anderson et al., 1992; Thomas and Anderson,
1994; Blum et al., 1995; Simms et al., 2006]. The underfilled character implies that sediment accumulation is
unable to keep pace with the rate of accommodation produced via base-level rise [Simms et al., 2006]. As
has been recognized by previous researchers, antecedent topography of the incised valley, for example,
floodplain width, exerts an influence on subsequent sedimentation patterns, and because the morphology
of the Trinity valley is known, it is possible to explore its influence on fluvial-deltaic stratigraphy associated
with infill (Figures 2 and 3) [Rodriguez et al., 2005; Simms et al., 2006; Anderson et al., 2008].

Figure 1. The Trinity River basin, which is approximately 44,000 km2, maintains an average annual water discharge of
730m3 s�1 and an average annual sediment discharge of 6.2 × 106 t. The average gradient is 1.6 × 10�4 [Rehkemper
et al., 1969; Anderson et al., 2004]. A USGS stream gage station is located at Crockett, TX. Galveston Bay, where the Trinity
River discharges, is enlarged in the inset. The locations for cross sections in Figures 2 and 3 are denoted as A-A0 and B-B0,
respectively.
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2.2. Sea-Level and Associated Base-Level Rise

Sea-level rise and subsidence rates are well constrained for the northern Gulf of Mexico over the last
10,000 years. The values for these two parameters are considered cumulatively in order to estimate the
base-level rise experienced by the Trinity system (i.e., base-level rise equals the combined effect of sea-level
rise and subsidence). Milliken et al. [2008] produced a sea-level curve for the northern Gulf of Mexico derived
from bayline peat and swash-zone deposits, which are reliable sea level markers and are easily datable
(Figure 4) [Milliken et al., 2008]. Between approximately 10 and 8 ka before present, the time period of interest
for this study, sea-level rise rates were 4.2� 0.6mmyr�1 [Milliken et al., 2008]. Simms et al. [2013] reported
that the long-term subsidence along the Texas Gulf Coast, primarily attributed to sediment loading,
compaction, and isostatic adjustment, is approximately 0.07� 0.03mmyr�1. Locally, however, subsidence
rates could be as high as 3mmyr�1 due to greater sedimentation and therefore enhanced compaction
[Simms et al., 2013]. Summing sea-level rise and subsidence rates reported for 10–8 ka before present
produces a base-level rise value of 4.3mmyr�1, which is within the bounds of variability for the reported
sea-level rise and subsidence rates and is assumed to account for Glacial Isostatic Adjustment. While we
use a single, standard rate of base-level rise (4.3mmyr�1) to simulate Holocene transgression, it is neverthe-
less possible to evaluate higher or lower rates within the modeling framework, thereby considering
spatiotemporal adjustments.

Figure 2. Cross-sectional interpretation of facies and valley morphology derived from seismic data and cores collected
within Galveston Bay (see Figure 1 for location). The base of the valley is represented by a MIS 2 Sequence Boundary
that formed during the last sea level lowstand. Radiocarbon dating of sediments within Galveston Bay is used to constrain
the timing of sediment deposition. The valley began filling approximately 17 ka before present due to the onset of
Holocene transgression. Increasing base-level-produced backstepping of coastal facies (figure modified from Rodriguez
et al. [2005, Figure 4]).

Figure 3. Axial dip section through Galveston Bay, interpreted from seismic and drill core data (see Figure 1 for location).
Core locations, radiocarbon dates, and depositional facies are shown. Note how the facies backstep from south to north
through time. Vertical aggradation rates of the fluvial facies are estimated to be 1.1mm yr�1 (figure modified from
Anderson et al. [2008, Figure 12]).
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2.3. Water Discharge

Modern water discharge measurements for the Trinity River are used in this study because climate for the
basin is estimated to have been consistent for much of the Holocene [Musgrove et al., 2001; Weight et al.,
2011]. Water discharge measurements for the Trinity River are available from the U.S. Geological Survey
(USGS) stream gage station 8065350 near Crockett, TX, located 380 river kilometers upstream of Galveston
Bay (Figure 1). This station has been in operation from 1964 to present and was selected because it is the
farthest downstream stream gage along the Trinity River that is not influenced by tides or backwater effects
and because this station has produced continuous data of water stage and discharge.

The water discharge for a modern bankfull condition is considered in the model framework, assuming that
the majority of stratigraphy-building sediment transport events occur during bankfull flow [Wolman and
Miller, 1960]. This value is determined by comparing stage heights and the corresponding water discharges
at Crockett, Texas, whereby bankfull discharge is the value above which no significant change in stage is mea-
sured [Leopold et al., 1964]. For the Trinity River at Crockett, a range of values best characterizes this criterion,
measuring 900–2,500 m3 s�1. Within the model framework, flow does not emerge overbank, and therefore,
the modeled flood conditions reflect flowwithin the prescribed channel. It is assumed that the base-level rise
rate is low enough over centuries to millennia that as the modeled fluvial system evolves, it is able to mor-
phodynamically equilibrate to the imposed changing boundary conditions and therefore maintain a geome-
try that contains bankfull discharge. A characteristic intermittency value of 0.05 or 20 d yr�1 is used, based on
the distribution of flow events that fall within the bankfull conditions. It is emphasized that within the mod-
eling framework, both bankfull flow and intermittency are readily adjustable.

Approximately 50 km below the Livingston Dam, the lower Trinity River achieves transport capacity of sand,
possesses extensive point bars, and migrates laterally; this stretch of the lower Trinity River above the back-
water zone is not influenced by the Livingston Dam and is used to inform our channel parameterization
[Smith, 2012]. Channel width for the Trinity at bankfull conditions (B) is relatively constant throughout the
lower few hundred kilometers of the basin, measuring approximately 200m [Smith, 2012]. Although channel
characteristics vary along the river, for simplicity we assume constant values of bankfull channel width, flood-
plain width, grain size, and water discharge, based on values that have been reported for the study area
(Table 1) [Rehkemper et al., 1969; Rodriguez et al., 2005; Smith, 2012].

2.4. Floodplain Development

For the conditions of a constant elevation of the receiving basin (i.e., zero values of subsidence and sea-level
rise), and reach-average sediment transport continuity, it is expected that sediment eroded from and depos-
ited on the floodplain—that is, sediment exchange between the river channel and floodplain—occurs in
equilibrium. Based on these considerations, previous morphodynamic models evaluating backwater

Figure 4. Northern Gulf of Mexico composite sea-level curve for 10 ka before present to present. Sea level was derived from
bayline peat and swash zone deposits [Milliken et al., 2008]. Our model simulates sea-level rise between 10 and 8 ka before
present, when the average rate of rise was 4.2� 0.6mm yr�1 (figure modified from Milliken et al. [2008]).
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hydrodynamics have ignored exchange of channel and floodplain sediment [Parker, 2004; Chatanantavet
et al., 2012; Lamb et al., 2012; Nittrouer et al., 2012; Ganti et al., 2014]. However, when considering system
response to varying elevation of the receiving basin (i.e., base-level rise) over century tomillennial time scales,
it could be necessary to account for sediment exchange between the floodplain and channel [Parker et al.,
2008b] because, over this time scale, base-level rise and increased accomodation space cause system aggra-
dation and disequilibrium exchange between the channel and floodplain. Aggrading sediment buries pre-
vious deposits below the morphodynamic reworking depth of the system (typically characterized by the
channel depth), thereby permanently sequestering this sediment as part of the floodplain stratigraphy
[Straub et al., 2009; Straub and Esposito, 2013; Li et al., 2016].

Lauer and Parker [2008a, 2008b] calculated the characteristic advection length of mud on the floodplain for the
Clark Fork River, Montana. The slow settling velocity of this sediment rendered the advection distance long:
approximately 200 km. For the lower Trinity River floodplain, the valley width is significantly shorter
(Bf=7.2 km) than the Lauer and Parker [2008a, 2008b] advection length because the Trinity system, as described
above, is bounded by Pleistocene terraces. Therefore, it is possible that when the Trinity River floods, the valley
fills with sediment-laden water that drains downstream, resulting in limited mud deposition. This process could
be what accounts for the composition of Trinity floodplain sediments: sandwith comparatively little mud [Phillips
et al., 2004], as well as the sandy nature of the incised valley fill deposits [Rodriguez et al., 2005]. Additionally, any
washload sediment that is deposited on the floodplain via overbank flows is likely subsequently eroded during
lateralmigration of the channel, wherebymud is entrained and transported downstream, and sandy channel bed
sediment captured in point bars remains as part of the floodplain deposit [Parker et al., 2008a, 2008b, 2011].

2.5. Avulsions

Channel avulsions influence sediment partitioning and stratigraphy of fluvial-deltaic systems [Aslan and Blum,
1999; Mohrig et al., 2000; Slingerland and Smith, 2004; Hoyal and Sheets, 2009]. Channel avulsions are “set up”
by sediment deposits aggrading the river bed, a process that tends to raise the elevation of the river surface
and facilitate an avulsion “trigger,” which typically arises during flood events when levees are breached as a
result of the reduced channel capacity that is unable to maintain water throughput [Slingerland and Smith,

2004]. The characteristic time to an avulsion (TA) is estimated by TA ¼ H
VA
, where H is flow depth during bank-

full conditions and VA is the vertical rate of sediment aggradation of the channel bed [Mohrig et al., 2000;
Jerolmack and Mohrig, 2007]. However, it is observed that in modern and paleo-systems alike, channels tend
to avulse before the prescribed TA [Mohrig et al., 2000; Jerolmack, 2009; Ganti et al., 2014]. For example, Ganti
et al. [2014] showed that for the Yellow River, China, channel avulsion time scales are better approximated by
using a modified depth of 0.3–0.6H.

For fluvial-deltaic systems, avulsions typically occur near the backwater transition, because here downstream
flow velocity decelerates (i.e., nonuniform flow typical of backwater regions), sediment transport capacity is
reduced, and a region of focused deposition arises [Jerolmack and Swenson, 2007; Hoyal and Sheets, 2009;
Chatanantavet et al., 2012; Lamb et al., 2012; Nittrouer et al., 2012]. This process tends to enhance VA and
therefore reduce TA [Jerolmack and Swenson, 2007; Chatanantavet et al., 2012; Nittrouer et al., 2012].

Table 1. Model Input Parameter Values

Variable Definition Value Reference

B Bankfull channel width 200m Smith [2012]
Bf Floodplain width 7,200m Rodriguez et al. [2005]
Cf Friction coefficient 3.6 × 10�3 Parker [2004]
D Median grain diameter 250 μm Rehkemper et al. [1969]
g Acceleration due to gravity 9.81m s�2 —
i Intermittency parameter 0.05 Wolman and Miller [1960]
R Submerged specific gravity of sediment 1.65 —
S Channel bed slope 1.6 × 10�4 (initial slope) Rehkemper et al. [1969]
λp Bed porosity 0.4 Parker [2004]
ρ Water density 1000 kgm�3 —
Ω Sinuosity 1.86 (Measured using Google Earth

imagery of the Trinity River)
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3. Modeling Framework

A 1-D morphodynamic model is implemented to evaluate how changing rates of base-level rise and varying
water discharge influences sediment deposition; input parameters applied within the model are defined in
Table 1 and the Notation section. Accounting for sea-level rise in a morphodynamic model has been
described previously [Parker et al., 2008a, 2008b]; however, applying the concepts of base-level rise and
channel-floodplain interaction to evaluate changes in sediment deposition patterns to the channel bed,
and then linking this to the spatiotemporal conditions of channel avulsions, has not yet been explored. An
additional aim of the modeling framework is to evaluate the capacity for backwater hydrodynamics, over
time scales of centuries to millennia, to produce focused sedimentation that infills the incised Trinity River
valley during the latest Holocene transgression.

In order to assess hydrodynamics, our model evaluates flow depth (H) during bankfull conditions through
along-stream distance (x):

dH
dx

¼ S� Cf Fr2

1� Fr2
(1)

where S is the channel bed slope, Cf is a constant friction coefficient, and Fr is the Froude number, determined
by Fr=U(gH)�0.5, where g is the acceleration due to gravity and U is the reach-average flow velocity (Table 1).
Equation (1) is solved by using a predictor-corrector scheme, where the initial linear bed slope is defined. This
initial value is set to 1.6 × 10�4, which characterizes the lower Trinity River water surface and floodplain
(Table 1) [Rehkemper et al., 1969]. The channel bed slope is then allowed to evolve and is iteratively calculated
betweenmodel cells, as sediment enters and is eroded from or deposited on themodeled system. The spatial
step is equal to 1 km, and the time step is equal to 1 year; both the space and time steps in the modeling fra-
mework are sufficient to evolve and link morphodynamics to the production of fluvial-deltaic stratigraphy
over the domain of interest: several hundred kilometers and many centuries to millennia.

In order to account for sea-level rise, we define flow depth at the downstream most cell as follows:

ξd ¼ ξdo þ ζ t (2)

where ξd is the water surface elevation at the downstream end of the modeled domain, ξdo is the initial water
surface elevation prior to model calculations, and ζ is the rate of base-level rise. In this way, we can evaluate
the water depth at the downstream cell as H (x=0) =Ho+ ζ t, where Ho is the initial water depth (i.e., Ho=H
(t=0)=10m) and ζ is the sea-level rise rate. We apply a constant rate of base-level rise (ζ =4.3mmyr�1) over
the duration of the model run. The backwater length—the length of nonuniform flow—is evaluated based on
the distance between the upstream and downstream points where the water surface slope approaches zero.
Upstream of the backwater region, uniform flow velocity exists where the channel bed andwater surface profiles
are parallel, i.e., (dH/dx=0). We define the upstream initiation of backwater to start at dH/dx> 5×10�6, a thresh-
old that is considerably less than the initial slope of the uniform channel bed (i.e., 5 ×10�6≪1.6×10�4), and
which coincides with the location where flow velocity begins to diminish. Backwater effects extend downstream
to the receiving basin, and the downstream point of termination of this affected zone is defined by the location
where the water surface slope drops below the threshold value of dh/dx< 5×10�6, where h=H+ η is the bank-
full water surface elevation referenced to a fixed datum below the bed (η).

Sediment flux per-unit-channel width (qt,qt ¼
ffiffiffiffiffiffiffiffiffi
RgD

p
D 0:05

Cf

τb
ρRgD

� �2:5
, where R is the submerged specific grav-

ity of sediment, D is the median grain diameter, and ρ is the water density) is determined by using the
Engelund and Hansen [1967] total load equation for bed material, which is considered the “formative” sedi-
ment of lowland river morphodynamics [Parker, 2004]. τb is the boundary shear stress and determined by
τb= ρCfU

2. A constant rate of sediment input (Qs=0.12m3 s�1 [Rehkemper et al., 1969]) is applied to the
upstream most cell in the model, adjusted for channel width to calculate qt, and allowed to reach transport
capacity over 200 km before entering the lowermost 300 km reach of interest evaluated here. Additionally,
sediment input is subjected to the intermittency of flood flows. See Table 1 for model input parameter values.

A spatial divergence in sediment flux for each spatiotemporal step (∂qt/∂x) is calculated, and these values are
used to determine the resulting change in-channel bed elevation (∂η/∂t) based on a simplified version of the
Exner equation [Paola and Voller, 2005]. An intermittency parameter (i) is applied to the simple Exner equa-
tion because the fluvial system is considered only morphologically active for a fraction of the modeled time:
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1� λp
� � ∂η

∂t
¼ �∂qt

∂x
i (3)

where λp is bed porosity (Table 1).
Equation (3) captures bed elevation
change for the modeled domain
and represents a simple channel
model whereby all sediment
remains within the channel.

Herein, a modified version of equa-
tion (3) is considered, whereby bank-
full channel width (B), channel
sinuosity (Ω), and floodplain width
(Bf) are introduced tomodify the rate
of channel bed aggradation, and
thus account for sediment partition-
ing between the channel and adja-
cent floodplain [Parker et al., 2008a,
2008b]:

1� λp
� � ∂η

∂t
¼ �Ω B

Bf

∂qt
∂x

i (4)

Sinuosity is measured based on the
modern Trinity River (Ω=1.86;
Table 1), and this value is typical for
lowland, meandering river channels
[Parker, 2004; Parker et al., 2008a,
2008b]. Equation (4) serves to parti-
tion sediment between the channel
and floodplain and represents a
coupled channel-floodplain model
over the spatiotemporal scales con-
sidered here [Parker et al., 2008a,
2008b]. It is emphasized that this for-
mulation does not explicitly model
the processes of floodplain sedi-
mentation, but instead serves as a
means to evaluate a modified rate

of channel bed aggradation, due to sediment partitioning between the channel and the floodplain as a result
of lateral mobility of the channel across its floodplain combined with changing base level conditions [Parker
et al., 2008a, 2008b]. As will be discussed below, this modified version of the Exner equation captures the sys-
tem dynamics over centennial to millennial time scales, i.e., significantly longer than previous studies replicat-
ing sediment transport interactions influenced by backwater hydrodynamics. Equation (4) is solved
numerically by using central differences for time computations and a predictor-corrector scheme for spatial
computations; the Euler method is employed to calculate qt in the corrector phase. We define the vertical
aggradation rate of the channel for a given location, x, as VA= ∂η(x)⁄∂t.

Within the modeling framework, channel sedimentation is considered over the time period to an avulsion
event, by assuming that this avulsion set up time represents the characteristic “life cycle” of a fluvial-deltaic
distributary channel [e.g., Viparelli et al., 2015]. An avulsion is considered to occur in the model domain where
the channel bed aggrades (η; equation (4)) to a designated fraction of the flow depth (H; equation (1)).
Specifically, a range of 0.3–0.6H is considered as suggested by Ganti et al. [2014]. Only the time leading to
an avulsion event is modeled; the avulsion process itself, e.g., the trigger that leads to the channel changing
its path over the floodplain, is not considered here. For each time step, flow depth is computed based on the
calculated bed elevation change (η; equation (4)). Since the downstream-most boundary changes with time

Figure 5. (a) Spatiotemporal flow velocity, plotted from the onset of the
model (0 model years) to the time for an avulsion (TA = 3,548 model years).
The avulsion location (LA) is shown by the dashed line, at river kilometer (RK)
108. (b) Flow velocity and time (model years) shown for denoted locations
along stream, where RK represents river kilometers upstream of the outlet.
Flow velocity decreases downstream and with increasing model time due
to increasing flow depth associated with base-level rise through time
(equations (1) and (2)). Water discharge (Qw = 1,500 m3 s�1), sediment
input (Qs = 0.12m3 s�1), and rate of base-level rise (4.3 mm yr�1) are held
constant, and the time and location of avulsion are based on an avulsion
threshold of 0.3H in Figures 5a and 5b.

Journal of Geophysical Research: Earth Surface 10.1002/2015JF003778

MORAN ET AL. MODELING OF CHANNEL FILL AND AVULSIONS 8



(equation (2)), flow depth must
be calculated iteratively at each time
step within the model to identify the
location where the channel aggrades
to the imposed avulsion threshold.

4. Results

Within the backwater region of the
river the water surface profile is influ-
enced by the elevation of the receiv-
ing basin and base-level rise over
time, which therefore affects the
upstream extent of backwater condi-
tions. As a result of the imposed
base-level rise, changes in flow depth
(H) are more significant in the down-
stream backwater-influenced portion
of the model than in the upstream
normal flow reach. Channel cross-
sectional area (A= B *H) is therefore
greater downstream than upstream.

Following U ¼ Qw
A , where Qw is bank-

full water discharge, there is a down-
stream decrease in flow velocity, as
can be seen in Figure 5. As base-level
increases, the onset and termination
of the backwater region backstep
through time, rendering the back-
water region mobile (Figure 6).
Furthermore, the measured extent

of backwater lengthens over time. It follows then that the spatial decrease in flow velocity, shear stress,
and sediment flux should also migrate upstream over time (Figures 5 and 7). These conditions combine
to produce upstream movement of the avulsion location as a function of base-level rise. For example,
Figures 8a–8c and 8g, which represent individual model runs with differing rates of base-level rise which
were held constant, show that avulsions occur in positions progressively farther upstream with increasing
rates of base-level rise.

Characteristic Holocene base-level rise ranges from 3.7 to 4.8mmyr�1 based on reported values [Milliken et al.,
2008; Simms et al., 2013] discussed in section 2.2; since time and location of avulsion vary with base-level rise rate,
a range of times and locations best represents the results of our model. A base-level rise rate of 3.7mmyr�1 pro-
duces a time and location of avulsion of 2,548model years and 71 river kilometers, respectively, while a base-level
rise rate of 4.8mmyr�1 does not produce an avulsion due to base-level rise outpacing in-channel sedimentation.
Herein, we discuss the results of our model by using a constant base-level rise rate of 4.3mmyr�1, unless
otherwise specified.

4.1. Flow Velocity, Sediment Transport, and Sediment Deposition Patterns

The model results are bounded by base-level rise and as such the model captures variability of flow velocity in
space and time (Figure 5). Flow velocity profiles maintain a similar trend through time (Figure 5a) but at any
given spatial point, identified as river kilometer (RK) upstream of the outlet, flow velocity decreases over time
(Figure 5b). This is possible because while water discharge and channel width are held constant, cross-sectional
area increases via increasing flow depth in the downstream direction due to base-level rise, assuming that the
aggradation of sediment atop the levees keeps pace with base-level rise. It is noted that for a given water dis-
charge, flow depth only increases in the backwater region of the channel due to base-level rise; upstream of
backwater influence (i.e., in the normal flow regime) flow depth is uniform. Additionally, flow velocity decreases

Figure 6. Backwater influence on the water surface profile, with respect to
time (model years). Water discharge (Qw = 1,500 m3 s�1), sediment input
(Qs = 0.12m3 s�1), and rate of base-level rise (4.3mm yr�1) are held con-
stant, and the time and location of avulsion are based on an avulsion
threshold of 0.3H. The gray regions of the water surface denote where the
water surface is not contained within the backwater region (i.e., regions
that exhibit dH/dx> 5 × 10�6 (upstream) and dh/dx< 5 × 10-6 (down-
stream) where h =H + η). Note how the backwater region migrates
upstream through time, associated with increasing base level. The gray
regions on the channel bed represent sediment deposited prior to reach-
ing the avulsion threshold. The black dashed line represents the avulsion
location (LA), occurring at 108 RK after 3,548 model years. Inset: Plot of
backwater length and time (model years; see text for details on backwater
length calculation); note how the length of the backwater region increases
over time.
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downstream for each time step, and the location for the onset of decreasing flow velocity migrates upstream
over time (Figure 5). For example, in Figure 5a a flow velocity of 1.3m s�1 occurs at 41 RK at time 0, and after
~3,500 model years, the same flow velocity coincides with 138 RK. As seen in Figure 5a, flow velocity decreases
considerably, as is expressed by the steeply sloping region for the plot of flow velocity through time and
space. A constant flow velocity is observed in the upstream portion of the model and is indicative of nor-
mal (uniform) flow conditions; indeed, all flow velocity profiles converge to normal flow conditions in the
upstream model domain, even though the extent of uniform flow and the transition to nonuniform flow
migrate upstream over time.

Flow velocity (U; Figure 5) is used to calculate boundary shear stress (τb; Figure 7a, black line) and sediment
transport (qt; Figure 7a, magenta line). Bed material transport capacity is a strongly nonlinear function of flow
velocity as seen in Figure 7a. The avulsion location (LA = 108 RK) coincides with the regions of greatest spa-
tial change for shear stress and sediment load (Figure 7a). As seen in Figure 7b, the region of channel bed
sediment deposition coincides with the region of rapid spatial decrease in shear stress and sediment trans-
port rates. In other words, the majority of sediment deposited on the channel bed occurs within the region
of greatest decreasing transport capacity. Additionally, based on mass balance calculations, it is deter-
mined that a minor amount of sediment exits the model domain, as indicated by the near-zero sediment
discharge values at the outlet (Figure 7a). This nominal sediment volume does not change the overall
model results.

The sensitivity of the model is tested by varying base-level rise rates, and the findings show that the morphol-
ogy of the sediment deposit on the channel bed is transient and varies in accordance with base-level rise.
Figures 8a–8e depict five scenarios of changing rates of base-level rise to portray the possible morphologies
of sediment deposits evolving up to an avulsion threshold of 0.3H. Under the static boundary condition of

Figure 7. (a) Shear stress (τb; black line, left y axis) and sediment load (qt; magenta line, right y axis), plotted with river kilo-
meters upstream of the outlet. The location of avulsion is denoted by a red dashed line (LA = 108 RK). (b) Bed elevation
profile (solid and dashed black lines) and water surface elevation profile (solid and dashed blue lines) plotted over space for
the initial (dashed lines) and final time (i.e., avulsion time; solid lines; TA = 3,548 model years), for a base-level rise rate of
4.3mm yr�1. Water discharge (Qw = 1,500 m3 s�1), sediment input (Qs = 0.12m3 s�1), and rate of base-level rise
(4.3mm yr�1) are held constant, and the time and location of avulsion are based on an avulsion threshold of 0.3H in
Figures 7a and 7b.
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zero base-level rise (ζ = 0mmyr�1; Figure 8a), the sediment deposit “wedge” simply progrades downstream.
Similarly, the sediment wedge produced for a base-level rise rate of 2mmyr�1 progrades downstream,
although a greater bed elevation (thicker deposit) arises compared to the static scenario, because of the
increased time to reach the avulsion threshold (Figure 8b). When base-level rise is simulated at 4.3mmyr�1

(the value consistent with base-level rise experienced by the Trinity River during the early to middle
Holocene), the sediment wedge first progrades, then backsteps before reaching the avulsion threshold
(Figure 8c). For rates greater than 5mmyr�1, the sediment wedge progrades, then retrogrades but never
aggrades to the avulsion threshold (Figures 8d and 8e). As the base-level rise rate progresses from a static
scenario (zero), the deposited sediment wedge extends over a greater distance.

The influence of base-level rise is also reflected by the morphology of the sediment deposited on the channel
bed. It is clear that in all scenarios depicted in Figures 8a–8e, the slope of the water surface profile mimics the
profile of the sediment wedge. Parker [2004] developed a model with static boundary conditions whereby
sediment is deposited within in the backwater region, re-grading the downstream bed slope and producing
normal flow conditions. Our model results show that sediment is also deposited on the bed in a backstepping
fashion, which is especially pronounced for conditions of base-level rise rates greater than 2mmyr�1.

The locus of sediment deposition is tracked by determining the location of the maximum change in bed ele-
vation between each time step (∂η/∂t); this location is sequentially plotted in Figure 9 to determine the rate at
which progradation and backstepping occur within the channel. As the maximum change in bed elevation
moves downstream, a negative slope is produced, as seen in Figure 9, representing a prograding sediment
deposit. As the maximum change in bed elevation migrates upstream, a positive slope is produced, asso-
ciated with the backstepping sediment deposition (Figure 9). For rates of base-level rise of 4.3mmyr�1,

Figure 8. Five model runs (refer to Table 1) selected to portray the effects of the rate of base-level rise on sediment wedge morphology, the time to avulsion (TA),
and the avulsion location (LA). The upper curves are the water surface, while the lower curves represent sediment deposited on the channel bed. The dashed
black lines represent the avulsion location in cases where avulsions occur. Water discharge (Qw = 1,500 m3 s�1) and sediment input (Qs = 0.12m3 s�1) are held
constant for all runs; the time to avulsion is based on an avulsion threshold of 0.3H. (a) No base-level rise, (b) 2mm yr -1, (c) 4.3mm yr�1, (d) 6 mmyr�1, (e) 8mm yr�1,
and (f) time to avulsion (TA) plotted for various base-level rise rates. (g) Avulsion location (LA) plotted for various base-level rise rates. Note that avulsions do not
occur at base-level rise rates greater than 4.5mm yr�1 for the water and sediment discharge conditions considered.
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sediment progrades downstream at
a rate of 13myr�1 and backsteps
at a rate of 27myr�1. This
transition between prograding and
backstepping sediment deposition
for conditions reflecting Holocene
transgressionoccursafter564model
years and is depicted by the break in
slope seen in Figure 9.

4.2. Sensitivity to Water and
Sediment Discharge,
Partitioning of Sediment to the
Floodplain, and
Avulsion Threshold

Our analysis shows that the time
to avulsion varies with discharge
and the rate of base-level rise.
Specifically, Figure 10a demon-
strates model sensitivity to the
observed range of bankfull dis-
charges (900–2,500m3 s�1), assum-
ing capacity transport at the
beginning of each simulation. For a
given discharge, time to avulsion
increases with the rate of base-level

rise. Conversely, for a given base-level rise, time to avulsion decreases with greater discharge due to larger
volumes of sediment in transport and thus greater deposition in the backwater zone. However, when rates
of base-level rise outpace deposition, avulsion is precluded. In contrast to the above results, when floodplain
sedimentation is neglected (equation (3)), time to avulsion is greatly reduced and is insensitive to both dis-
charge and the rate of base-level rise (Figure 10b). The contrasting results of Figures 10a and 10b emphasize
the importance of accounting for sediment partitioning between the channel and floodplain when consider-
ing avulsions over stratigraphically meaningful time scales. For example, the lowest avulsion threshold as

Figure 9. The location for the depositional front (river kilometers, referenced
above the outlet), as calculated based on the maximum change in bed
elevation, and time (model years). Note that periods of sediment
progradation are indicated by a negative slope (i.e., advancing progradation
front with time) and periods of sediment backstepping are indicated by a
positive slope (i.e., retreating depositional front with time). The model
considers the input parameters of the Trinity River with a base-level rise rate
of 4.3mm yr�1 and water discharge of 1,500 m3 s�1 (see Table 1 for
additional input parameters).

Figure 10. Phase diagrams showing time to avulsion for varying base-level rise rates and water discharge conditions.
Avulsion threshold is held constant at 0.3H for both scenarios; see Table 1 for additional input parameters. The white
asterisk represents modeled conditions of the early to middle Holocene Trinity River. (a) Time to avulsion utilizing a
channel-floodplain model which partitions sediment to the floodplain (equation (4)). (b) Time to avulsion utilizing a simple
channel model with no sediment partitioning to the floodplain (equation (3)).
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proposed by Ganti et al. [2014] (0.3H) generates no avulsions for base-level rise rates greater than
4.5mmyr�1, when using the channel-floodplain model (equation (4) and Figures 8f, 8g and 10a) and input
parameters that characterize the Trinity River; however, utilizing the same avulsion threshold and a simple
channel model (equation (3) and Figure 10b), avulsions are generated for base-level rise rates up to
10mmyr�1.

To explore model sensitivity to the avulsion threshold parameter, a range of values was examined (0.05H-H)
in 0.05H increments. Figure 11 shows how the time to avulsion varies as a function of both the avulsion
threshold parameter and the rate of base-level rise for a constant water discharge (Qw= 1,500 m3 s�1). As
expected, the results show that more time is required to reach higher avulsion thresholds than for lower avul-
sion thresholds. Increasing the avulsion threshold decreases the highest rate of base-level rise under which
an avulsion can be set up. If the rate of base-level rise exceeds the rate of sediment aggradation, the avulsion
threshold is never met. For lower thresholds (e.g., 0.3H), avulsions can occur despite high rates of base-level
rise (up to 4.5mmyr�1; Figure 11) because less sediment deposition is required to attain the threshold for
avulsion. Conversely, for higher thresholds (e.g., 0.6H), an avulsion is produced only for lower rates of base-
level rise (less than 2mmyr�1; Figure 11) because more sediment deposition is required to reach the avulsion
threshold. Lower avulsion thresholds increase the potential for an avulsion, while higher avulsion thresholds
decrease the potential for an avulsion at any rate of base-level rise. These results explain why the avulsion
time for a 0.3H threshold at 4.5mmyr�1 is less than the avulsion time for a 0.5H threshold at 2.5mmyr�1

(Figure 11). Furthermore, the modeled system exhibited in Figure 11 is unable to infill its channel with sedi-
ment to an avulsion threshold at rates of base-level rise greater than 10mmyr�1 due to the fact that base-
level rise rate outpaces in-channel aggradation.

5. Discussion

Backwater morphodynamics produce sediment deposition within fluvial-deltaic channels, as has been shown
in previous studies, and the net effect of this process is to set up channel avulsions whereby sediment infill
reaches a threshold value, with respect to the overall channel depth [e.g., Lamb et al., 2012; Nittrouer et al.,
2012; Ganti et al., 2014]. We confirm that for the Trinity River, the avulsion location for a condition of fixed
base-level rise remains within the backwater region (LA=108 RK), and thus does not extend upstream into
the region of uniform flow (Figure 6). Themodels of Chatanantavet et al. [2012] and Lamb et al. [2012] showed

Figure 11. Phase diagram for the time to avulsion based on varying base-level rise rates and avulsion thresholds. The avul-
sion threshold is expressed as a fraction of the channel flow depth (H), and the time to avulsion (TA) is based on when the
sediment deposit aggrades to the avulsion threshold. Water discharge is held constant at 1500m3 s�1; see Table 1 for
additional input parameters. The white asterisk represents modeled conditions of the early to middle Holocene Trinity
River.

Journal of Geophysical Research: Earth Surface 10.1002/2015JF003778

MORAN ET AL. MODELING OF CHANNEL FILL AND AVULSIONS 13



that an M2 curve (spatially accelerating flow) and enhanced sediment transport capacity, resulting from the
drawdown of the water surface profile toward the receiving basin during river floods, produce channel bed
scour. Specifically, Chatanantavet et al. [2012] proposed that it is the alternation between both M1 and M2
conditions that facilitates avulsion setup. Interestingly, M2 conditions are not obtained for the Trinity River
model, yet avulsion still occurs. The absence of M2 conditions predicted from themodel is due to the fact that
the simulated water discharge is sufficiently low, precluding a hydrodynamic drawdown effect at the river
mouth. Our results therefore show that there is also a propensity for avulsions within the backwater reach
without occurrence of alternating M1 and M2 conditions.

The differences in the results presented here and those of previous studies could be associated with the rising
condition of base level and the associated response of channel bed sedimentation within the backwater
region. The motivation here is to evaluate morphodynamic responses to these boundary conditions, in order
to mimic a condition of transgression over stratigraphically meaningful time scales. The discussion below
focuses on the specific case of the Trinity River system, where we find that by adding base-level rise as a
boundary condition (equation (2)) to the model of backwater morphodynamics, the timing, location, and
magnitude of sedimentation patterns, and therefore avulsion conditions, are influenced. This constitutes a
new contribution provided by the analyses presented herein.

5.1. Trinity River Sedimentation Patterns During Transgression and Rates of Incised Valley Infill

Trinity River incised valley stratigraphy consists of fluvial, deltaic, and basin mud deposits, which are char-
acterized by backstepping stratigraphic architecture that reflects the landward shift of these depositional
environments due to sea-level rise or changes in valley morphology [Thomas and Anderson, 1994;
Rodriguez et al., 2005; Anderson et al., 2008]. The deposits filled an incised valley, and therefore, much of
the sediment mass is contained and relatively unaffected by transgressive ravinement. Importantly,
researchers have identified backstepping of the sedimentary facies associated with a time period for when
sea level was rising at an average rate of 4.2mmyr�1 (Figures 2–4) [Anderson et al., 2008; Milliken et al.,
2008], and this is consistent with the model results that demonstrate a backstepping character of in-
channel sedimentation for rates of base-level rise greater than 2mmyr�1 (Figure 6). However, it is also
known that a significant facies backstepping event occurred between ~7.4 and ~7.7 ka before present,
when the rate of sea-level rise (1.4mmyr�1) was significantly lower than early to middle Holocene rates,
although this flooding event is recognized to have occurred when sea level reached the elevation of a
broad, terraced portion of the valley, which allowed for a significantly increased area of inundation and
sediment accommodation (Figures 2–4) [Rodriguez et al., 2005]. Therefore, backstepping of sedimentary
facies within the Trinity incised valley system, as recorded in the stratigraphy, occurs due to the effects
of sea-level rise rate and valley morphology.

In the absence of variable valley geometry, as modeled for the Trinity system, sedimentation patterns may
either backstep or prograde depending on a “threshold” rate of base-level rise. This threshold for the Trinity
River is determined to be 2mmyr�1; for this rate of base-level rise, the frequency and location of channel
avulsion are essentially fixed. For rates of base-level rise less than 2mmyr�1, the system progrades and
aggrades contemporaneously, which over time leads to the development of normal flow conditions pro-
gressively downstream as the channel bed aggrades basinward, thereby countering backwater effects by
maintaining uniform flow depth. This situation of the channel re-equilibrating and nullifying backwater con-
ditions has been noted in models that do not consider base level adjustments [e.g., Parker, 2004]. Thus, for
relatively small changes in base-level rise, the fluvial system maintains sufficient sediment volume to
aggrade the bed and maintain uniform flow. Alternatively, for conditions of base-level rise greater than
2mmyr�1, sediment backstepping develops, whereby the region of greatest sediment deposition migrates
upstream over time. This threshold base-level rise rate for the Trinity River system (2mmyr�1) could be
applicable to other lowland fluvial systems that possess similar physical characteristics (slope, discharge,
and sediment transport rate). In order to appropriately constrain the progradation and backstepping
threshold conditions for a unique system, input parameters that characterize the fluvial system should be
implemented into the modeling framework.

The backstepping of backwater-induced deposition modeled for the Trinity system is compared to measure-
ments acquired via stratigraphy. The model results indicate that for a base-level rise of 4.3mmyr�1, the
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region of focused deposition moves landward at a rate of 27myr�1 (Figure 9). This value closely corresponds
to the observed backstepping measured from the fluvial-deltaic sedimentary facies within the incised valley
deposits located in Galveston Bay, ~25myr�1 [Anderson et al., 2008] (Figures 3 and 9). We propose that the
backstepping rate of in-channel sedimentation during transgression of the Holocene Trinity system may be
approximated by the quotient of base-level rise and the characteristic channel bed slope. For example, the
Holocene Trinity River base-level rise used here (4.3mmyr�1) and characteristic channel slope of
1.6 × 10�4 produce an estimated rate of backstepping of 27myr�1, which is a value consistent with both
the measured and modeled results.

Vertical aggradation rates measured for the fluvial-deltaic sand of the Trinity incised valley deposits can also
be compared to modeled results. Based on, first, the sediment thickness (~11.4m) between the top of
Pleistocene sediments (the onset of Galveston Bay sedimentation; ~20 ka before present) and a prominent
flooding surface (9.6 ka before present) which represents cessation of channel sedimentation and onset of
bay mud deposition, and second, the measured age difference between these two surfaces, the vertical rate
of aggradation for the fluvial-deltaic sand facies is estimated as ~1.1mmyr�1 [Rodriguez et al., 2005; Anderson
et al., 2008] (Figure 3). The results of the channel sedimentation model presented herein constrain a vertical
aggradation rate for this region to 0.68mmyr�1 by considering the thickest sediment deposit divided by the
time to avulsion. The discrepancy between the measured and modeled vertical aggradation rates could be
due to the fact that the model considers backwater-induced sedimentation only within the fluvial dispersal
channel, and not beyond the channel mouth. Therefore, the model neglects deposition associated with
the downstream deltaic facies, thereby underpredicting the total sand deposited within the incised valley.
Furthermore, measurements of sand deposit ages and thickness may not discriminate between the channel
and downstream deltaic facies. Additionally, the difference could also be associated with variable, and/or
poorly constrained, age control for the fluvial-deltaic sand deposits of Galveston Bay. It is nevertheless inter-
esting that neither the modeled nor measured rates match estimated base-level rise (4.2� 0.6mmyr�1) dur-
ing the Holocene transgression. The difference between these values is consistent with the hypothesis that
the Trinity system could not keep pace with base-level rise. Hence, the system “drowned” during Holocene
transgression, and the remaining topography of the underfilled valley, now comprises Galveston Bay
[Simms et al., 2006; Anderson et al., 2008].

Although themodel presented here focuses on deposition of bedmaterial within the fluvial channel, we note
that washload is also an important component of the deltaic and distal bay mud facies; consistent with many
lowland fluvial-deltaic systems, washload from the Trinity River is primarily transported through the system
and deposited within the downstream deltaic and distal bay depositional environments. While the initial
point of delta sedimentation modeled here reflects the delta apex [Parker et al., 2008a, 2008b], it is clear that
based on the observed stratigraphy of the incised Trinity valley, the downstream deltaic and bay mud facies
also backstep systematically with the rising base-level conditions (Figure 3). Therefore, modeling the mor-
phodynamics of the backwater transition, and considering the migration rate of this transition due to the
influence of rising base level, also reflects the tendency for the downstream, mud-dominated facies to move
landward during transgression.

5.2. Trinity River Channel Avulsions and Floodplain Sedimentation During Transgression

A significant finding here is that by including a parameter that characterizes partitioning of sediment to the
floodplain, there are important implications for the timing and location of modeled channel avulsions. A basic
Exner model for channel sedimentation (equation (3)), which has been implemented in many other studies
modeling bed evolution under the influence of nonuniform hydrodynamic conditions, limits alluvial deposi-
tion to the channel. For such a condition, avulsions are relatively frequent and essentially fixed in location
regardless of the rate of base-level rise, because all sediment deposition is confined to the channel.
Applying the channel-floodplain sediment partitioning model (equation (4)), however, renders ~5% of the
total alluvial deposition to the channel, and the remaining ~95% of the bed material is assumed to be incor-
porated into the floodplain strata. Process wise, floodplain sedimentation occurs by two primary mechan-
isms: overbank sedimentation (due to both crevasse splaying and overtopping of levees with sediment-
laden water) and sediment capture due to aggradation of bed material sediment that builds channel bars,
combined with channel migration that captures and integrates this sediment as part of the floodplain
deposit. Over the time scales expected for the infilling of an incised valley system (centuries to millennia),
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sediment exchange between the channel and the floodplain via lateral migration is robust [Parker et al.,
2008b]. The sediment deposits for the Trinity River incised valley system, as modeled here, reflect in-channel
sedimentation arising via backwater-induced deposition, which preferentially is the coarser bedmaterial load
(hence, sand [Nittrouer, 2013]). The increase in accommodation space via base-level rise will influence the
streamwise location of sedimentation and also produce net sediment storage because as the channel system
aggrades, sediment deposits are buried below the morphodynamic reworking depth, typically characterized
as the channel depth [Straub et al., 2009; Straub and Esposito, 2013; Li et al., 2016].

Indeed, for the Trinity fluvial-deltaic and floodplain facies, there is an abundance of sandy deposits relative to
mud, as measured by cores collected from the system (Figures 2 and 3) [McEwen, 1969; Rodriguez et al.,
2005]). This is particularly interesting when considering that the sediment load of the Trinity River, like many
lowland fluvial systems, is primarily mud (~75%), and yet the sediment that fills the incised valley is overwhel-
mingly sand [McEwen, 1969; Rice, 1969]. We speculate that lateral migration coupled with rising base level is a
likely mechanism to produce vertical aggradation of this sand: the production of accommodation space dur-
ing transgression, combined with backwater-induced sediment deposition of bed material sediment, results
in the preferential capture of sand to fill the incised valley. Due to the long advection length of mud, wash-
load is not likely deposited within the incised valley fill, but instead transported to distal delta depositional
regions. Hence, much of the resultant stratigraphy of the incised valley is dominated by channel sand
(Figures 2 and 3).

In regard to the timing of avulsions for the Trinity system, based on the modeled conditions of base-level rise
(4.3mmyr�1), a channel avulsion is produced after 3,548 model years for the minimum threshold of 0.3H
(e.g., in accordance with Ganti et al. [2014]), because for higher thresholds, in-channel sedimentation cannot
keep up with, let alone outpace, accommodation, in order to set up an avulsion (Figure 11). In essence, if the
rate of base-level rise and production of accommodation are too great, then the channel system is immune to
avulsions. Consider that by increasing the avulsion threshold to 0.4–0.6H (e.g., in accordance with Ganti et al.
[2014]), avulsion conditions are only established if the base-level rise rate is no larger than 3.5mmyr�1

(Figure 11). Alternatively, enhancing water discharge to 2,500m3 s�1 produces conditions of avulsion set
up for the 0.3H threshold for base-level rise rates of 4.5mmyr�1 because more sediment is supplied to the
system (assuming capacity transport; Figure 10a). However, the rate of sea-level rise, as measured during
the Holocene period of modeling, is constrained and is estimated not to have exceeded 4.2� 0.6mmyr�1

(Figure 4) [Milliken et al., 2008]. Given these results, we surmise that for distributary-forming channel avulsions
to have occurred within the Trinity River during the period of Holocene transgression modeled here, an avul-
sion threshold value of 0.3H or smaller is required.

An important factor affecting the texture of valley fill deposits and resulting stratigraphy is the time to avul-
sion relative to the time that it takes a river to traverse its valley during lateral migration. As calculated by
Wellmeyer et al. [2005], the range of lateral migration for the Trinity River was 3.0m yr�1 to 6.5m yr�1

between 1938 and 1964, with a time weighted average equal to 3.8myr�1. Using this approximate value,
it would require ~1,895 years for the Trinity River to traverse the width of the incised valley (Bf=7.2 km), or
approximately half of the time required to meet the minimum threshold of an avulsion. During this time,
approximately 1.2–2.1m of sediment is expected to deposit, based on the values of sandy channel sedimen-
tation produced from both measured (1.1mmyr�1) and modeled values (0.68mmyr�1). This deposit thick-
ness represents approximately 20–40% of the bankfull channel depth (H= 5m); therefore, it is expected
that subsequent migration of the channel could rework one-half to three-quarters of the previously depos-
ited floodplain sediment, which in turn further coarsens the deposit facies toward a primarily sand facies
[Rodriguez et al., 2005; Parker et al., 2011]. This reworking process represents yet another means to coarsen
valley fill deposits and render the resulting stratigraphy as primarily composed of sand.

6. Conclusions

The stratigraphy of the Trinity valley, well constrained by previous core and seismic studies, provides
unprecedented control to test a morphodynamic model that predicts patterns and mechanisms of incised
valley sediment filling during Holocene transgression. An important goal of this study is to describe how
backwater-induced sedimentation and the spatiotemporal set up of channel avulsions are influenced by
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(1) rate of base-level rise and (2) the partitioning of sediment between the channel and the floodplain. We
find that backwater-induced sediment deposition causes progradation or backstepping that is dependent
on the rate of base-level rise and likely influenced by the geometry of the filling incised valley. For example,
progradation of the Trinity system is predicted for rates of base-level rise less than 2mmyr�1 because sedi-
ment deposition is sufficient to keep pace with the increasing accommodation space afforded by base-
level rise; however, the stratigraphic evidence from the Trinity system indicates that backstepping
occurred for lower rates (1.4mmyr�1) pervasive in the late Holocene because the elevation of a terrace
was over topped, resulting in increased area of water inundation and sediment accommodation.
Nevertheless, during the time period considered in this study (early to middle Holocene), valley geometry
is constant, and it is predicted that backstepping occurred for base-level rise rates of 4.3mm yr�1 due to
increasing accommodation space that outpaced sediment deposition. Additionally, the rate of backstep-
ping during this period—determined by the movement of the location of maximum backwater-induced
sedimentation—is modeled to be 27m yr—1, which agrees with the stratigraphic record, which indicates
a rate of ~25m yr�1. We propose that to first order, the rate of backstepping may be constrained by the
quotient of the characteristic channel bed slope and rate of base-level rise; this value, calculated for the
Trinity system, is 27m yr�1.

Regarding the propensity for deltaic avulsions, we find that increasing rates of base-level rise reduce the
frequency of avulsions because there is enhanced accommodation space for sedimentation, making it less
likely for the channel to reach the threshold necessary to set up an avulsion (i.e., 0.3–0.6H). Conversely, redu-
cing the rate of base-level rise increases the frequency of channel avulsions. For the Trinity system and the
conditions modeled here, it was determined that for the base-level rise rate of 4.3mmyr�1, an avulsion
occurred after 3,548 model years. Furthermore, for a rate of base-level rise greater than 4.5mmyr�1, avul-
sions were stymied because in-channel deposition could not reach the minimum threshold required to set
up an avulsion (0.3H).

This study uses a morphodynamic model to establish patterns of sediment deposition in order to inform the
development of stratigraphy over century to millennial time scales. We demonstrate that for these time
scales, it is necessary to use a modified Exner equation to account for sediment partitioning between the
channel and floodplain in order to resolve differences in time and location of avulsion. In contrast, using
the Exner formulation that does not include a term accounting for sediment partitioning to the floodplain
—a precedent established in previous studies of backwater sedimentation over shorter temporal scales than
described here—underpredicts the time required to set up an avulsion and produces a narrow range of
values for the timing and location of avulsions.

Several processes contribute to deposition of relatively coarse material within lowland rivers such as the Trinity
over time scales of centuries to millennia. In particular, lateral migration of the channel causes coarse bedmate-
rial associated with point bars to be incorporated into valley fill deposits. Similarly, backwater-induced sedimen-
tation selectively forces deposition of the coarser portion of the sediment load. Base-level rise produces
accommodation space that results in the preservation of such deposits, building stratigraphy of the fluvial-
deltaic system. As such, we predict that the early to middle Holocene deposits infilling the incised Trinity valley
should be composed primarily of coarser material (in this case, sand) due the to the combined effects of lateral
channel migration and base-level rise. Our supposition is corroborated by the stratigraphic record: the sediment
fill of the incised Trinity valley, over the time period of consideration, is almost exclusively sand. This is interest-
ing because like most other lowland river systems, much of the total sediment load of the Trinity River is mud
[McEwen, 1969; Rice, 1969]; however, that material, with its substantially long advection length, is likely trans-
mitted downstream and deposited in the distal deltaic and marine depositional settings.

Our modeling demonstrates that partitioning of sediment between the channel and floodplain influences
the timing and location of avulsions, when boundary conditions such as avulsion threshold and base-level
rise rate are varied. Furthermore, our analyses suggest that understanding of fluvial-deltaic processes and
deposits requires considering the combined effects of base-level rise and channel migration. The objective
of this study is to build a framework whereupon other fluvial-deltaic systems that lack robust constraints
on stratigraphy can be modeled using measured or inferred boundary conditions of water discharge, sedi-
ment discharge, channel width, floodplain width, grain size, channel bed slope, and sinuosity, of either mod-
ern or paleo-fluvial systems.
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Notation

Variables are defined in alphabetical order. Units for each variable are defined where L is length, M is mass,
and T is time. Constant input parameters are defined in Table 1 and denoted with an asterisk here.

A cross-sectional channel area, L2

*B bankfull channel width, L
*Bf floodplain width, L
*Cf friction coefficient, unitless
*D median grain diameter, L
Fr Froude number, unitless
*g acceleration due to gravity, L T�2

H bankfull flow depth, L
h bankfull water surface elevation plus bed elevation (η), L
*i intermittency, unitless
LB characteristic backwater length scale, L
qt bed material load per unit channel width, L2 T�1

Qs sediment discharge, L3 T�1

Qw water discharge, L3 T�1

*R submerged specific gravity of sediment, unitless
*S channel bed slope, unitless
t time, T

TA avulsion time scale, time between avulsions, T
U flow velocity, L T�1

VA vertical aggradation rate, L T�1

x space, L
ζ rate of base-level rise, L T�1

η bed elevation from a fixed datum, L
*λp bed porosity, unitless
ξd water surface elevation at the downstream end of modeled domain, L
ξdo initial water surface elevation at the downstream end of modeled domain, L
*ρ water density, ML�3

τb boundary shear stress, ML�1 T�2

*Ω sinuosity, unitless
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