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Coralgal reef morphology records punctuated
sea-level rise during the last deglaciation
Pankaj Khanna 1, André W. Droxler1, Jeffrey A. Nittrouer1, John W. Tunnell Jr2 & Thomas C. Shirley3

Coralgal reefs preserve the signatures of sea-level fluctuations over Earth’s history, in

particular since the Last Glacial Maximum 20,000 years ago, and are used in this study to

indicate that punctuated sea-level rise events are more common than previously observed

during the last deglaciation. Recognizing the nature of past sea-level rises (i.e., gradual or

stepwise) during deglaciation is critical for informing models that predict future vertical

behavior of global oceans. Here we present high-resolution bathymetric and seismic sonar

data sets of 10 morphologically similar drowned reefs that grew during the last deglaciation

and spread 120 km apart along the south Texas shelf edge. Herein, six commonly observed

terrace levels are interpreted to be generated by several punctuated sea-level rise events

forcing the reefs to shrink and backstep through time. These systematic and common

terraces are interpreted to record punctuated sea-level rise events over timescales of

decades to centuries during the last deglaciation, previously recognized only during the late

Holocene.
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Coralalgal reef establishment and evolution during the last
deglaciation have been well documented through chron-
ological, sedimentological, and paleontological studies,

and provide unique data sets upon which past sea-level records
have been reconstructed1–15. Most of these records display, since
the Last Glacial Maximum (LGM), several major intervals of
rapid sea-level rise over timescales of several centuries, referred to
as melt water pulses, in the uppermost Pleistocene.

Since the early 1930s16, several deep banks, with crests lying in
about 60 mbsl, were known to occur along the south Texas shelf
edge (Fig. 1). The coralgal origin of the banks was first proposed
in the mid-1970s17,18 based on five banks from which rock
samples were collected by piston coring, dredging, box coring,
and Van Veen grab. The rocks consist mainly of dead
corals (Agaricia sp., Madracis sp., Madracis asperula, Madracis
brueggemanni, Madracis myriaster, and Paracyathus pulchellus)
and coralline algal nodules. Only two samples were dated; a
coral sample from the top of Dream Bank at 68 m yielded a
radiocarbon age of 10,580± 155 years BP (11,901.5± 335.5
calendar years BP), and a coralline algal sample from the base of
Southern Bank produced a radiocarbon age of 18, 900± 370 years
BP (22,361± 428 calendar years BP)17,18. In late 1990s, a multi-
channel seismic grid on one of the reefs, Southern Bank, indicates
the thickness of the bank to be about 40–50 m19. It is also con-
cluded that the drowned banks along the south Texas shelf edge
were established on paleo highs associated with antecedent sili-
ciclastic topographies such as either beach barrier islands or
beach ridges developed during late LGM or earliest deglacia-
tion19. In absence of detailed chronologic dates and based upon
the current water depth range of these bank tops at about
60 mbsl, the demise of these reefs was proposed to have occurred
between ~12,250–11,500 Cal BP. Recent studies show that during
the LGM, the south Texas coastal system consisted of a bay
bounded by the Rio Grande and Colorado lowstand shelf edge
deltas, isolated from the open ocean by a barrier island complex20

(Fig. 1b). The coralgal reefs likely established themselves on top of
this lowstand coastal system, thrived, and grew vertically in less

than ~8000 years by tracking the 40–50 m of sea-level rise during
the uppermost Pleistocene19–21. Ultimately, the south Texas reefs
drowned and, starting at ~9 ka, were subsequently partially buried
by the Holocene Texas Mud Blanket17–21 (TMB).

The observed 40–50 m vertical accretion of the coralgal
banks in about 8000 years suggests average rates of sea-level
rise of 5–6 m per millennium, as in published sea-level
records1,2,12,13. This pace could have occurred only with the
occurrence of scleractinian coral species, including Acropora
palmata and Acropora cervicornis, which display unusually fast
growth rates and create the main coral framework of the Car-
ibbean reefs22. Although these species are not currently growing
at the latitudes of the northern Gulf of Mexico (GoM), except for
a few colonies of A. palmata newly established at the Flower
Garden Banks (FGB) (Fig. 1a) in the past decade23, it is assumed
that these species formed the coral framework of the south Texas
shelf edge drowned banks. This assumption is bolstered by the
recent discovery that A. palmata and A. cervicornis grew in large
numbers at the base of the FGB24 as early as 10,200 cal BP, based
on radiocarbon dating. The occurrence of these coral species as
early as the earliest part of the Holocene in the northern GoM
strengthens the inference that they most likely form the coral
framework of the uppermost Pleistocene south Texas shelf
drowned banks. Additionally, modern and presumably deglacial
near-surface circulation patterns in the GoM show that it is and
was responsible for carrying biotic communities into the GoM
from the Caribbean25.

It has been established that carbonate production areas shrink
through backstepping so to remain within the euphotic zone
when responding to sea-level rise; as such coralgal reefs form
distinct sets of terraces26 as they grow vertically keeping up with
sea-level rise. During transgressions, therefore, episodic and rapid
sea-level rise events result in set of terraces, preserving the nature
of sea-level rise and diagnostic morphological features of reefs
struggling to keep up with rising sea-level26–30. Ultimately, when
the area of carbonate production has shrunk to a minimum
through systematic backstepping, reefs are unable to grow
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Fig. 1 Modern and uppermost Pleistocene Texas shelf where living and drowned coralgal reefs are located. a Drowned banks along the south Texas shelf
edge are shown as red dots. The Flower Garden Banks, living coralgal reefs 150 km south of Galveston Island, are displayed as green dots. Note that,
with one exception, the drowned reefs are currently located between 70 and 80m isobaths. b Uppermost Pleistocene south Texas shelf coastal systems
at 20 and 17 ka20 (located in Fig. 1a by red rectangle), illustrate a shallow bay up to 35m deep, isolated from the open ocean by a barrier island complex,
on top of which the south Texas reefs (shown in red dots) were established during the early part of last deglaciation
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vertically fast enough to keep up so as to remain within the
euphotic zone and reefs ultimately drown26,31. The edifices of
drowned reefs sit below the euphotic zone, as the series of drown
banks along the south Texas shelf edge, which are no more ver-
tically accreting, although their crests are still covered by live
ahermatypic wire corals, sea-fans, mollusks, annelids, bryozoans,
and red algae, and are known to be excellent fishing grounds32.

The new data presented here provides an opportunity
to quantify well-imaged back-stepping terraces and identify
nature of the sea-level rise during last deglaciation leading
to the development of common backstepping morphologies.
High-resolution multibeam mapping and seismic profiling of 10
drowned banks, located along a 120-km-long stretch of the south
Texas outer shelf, identify six common terrace levels; these
identical morphologies provide new opportunities to understand
coralgal reef evolution through backstepping and terrace forma-
tion, most likely triggered by decade to century-long punctuated
sea-level rise during the middle part of last deglaciation. Existing
sea-level records do not have the ability to resolve these smaller
amplitude variations. Hence, it is pertinent to investigate

geological records that directly document spatiotemporal sea-
level changes to determine if decadal to century-scale sea-level
rise episodes are common occurrences.

Results
True coralgal reef morphologies. Multibeam bathymetric
mapping and 3.5 kHz seismic profiling, acquired in Septem-
ber 2012, onboard the R/V Falkor (Fig. 2 and Supplementary
Figs. 1–6), showcase the detailed morphological architecture of
the south Texas shelf edge drowned banks. Spurs and grooves,
typical morphological adaptations to high-energy inner fore
reef conditions33,34 (Figs. 2a and 3a, b), are preferentially
observed in the high-resolution bathymetry on the south-eastern
margins of several mapped banks and, therefore, coincident with
their windward high-energy sides; on their protected north-
western lee sides, these features are conspicuously absent. In mid-
1970, spurs and groves were already observed, aligned perpen-
dicular to the slope of the bank, by submarine operations using
DRV Diaphus35. Moreover, the new data presented here provides
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Fig. 2 High-resolution multibeam bathymetric maps illustrate the morphology of four of the ten imaged drowned coralgal reefs. a Baker Bank, b Dream
Bank, c Blackfish Ridge, and d Southern Bank (see Fig. 1a for their geographical locations). Spurs (ridges) and grooves (troughs) are usually identified on the
south-eastern (windward) side of the banks; the red rectangle in Fig. 2a locates well-developed spurs and grooves shown in Fig. 3a. Dream Bank in Fig. 2b
represents distinct atoll morphologies, with well-developed lagoons surrounded by rimmed margins (see Fig. 3c). Dream Bank also clearly displays a set of
distinct terraces, illustrated in Fig. 3d, e. Red lines on Fig. 2c locate the three 3.5 kHz seismic lines (1, 2, 3) shown in Fig. 4
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an opportunity to quantify well-imaged backstepping terraces
(Fig. 3c–e), defined as flat areas bounded by steep slopes, com-
mon in nine of the ten surveyed banks. These terraces, separated
by 1–2 m high faces of coralgal reef rock as was previously
observed using submersibles35, are quantitatively analyzed based
on multibeam data. Additionally, Dream Bank displays narrow-
rimmed margins enclosing shallow lagoons at two different
backstepping terrace levels, typical coralgal atoll morphologies
(Fig. 3c).

Ultimate coralgal reef demise. The 57.5–61.8 mbsl depth range
in which the crests of eight of the ten drowned coralgal reefs
occur, point to their contemporaneous demise (Fig. 3f). Fur-
thermore, this depth range coincides with stranded paleo-
shorelines and subtidal shoal complexes observed in the GoM36

(~58 mbsl), Caribbean37 (~57 mbsl), and Southwest Pacific37

(~56 mbsl). These paleo-shorelines and shoals are interpreted to
have been abandoned by an ~11.5 ka event of rapid rise in global
sea level, linked to the onset of MWP-1B occurring at the end of
the Younger Dryas1,15. It is hypothesized, therefore, that the final
demise of the south Texas drowned banks was triggered by the
MWP-1B, at ~11.5 ka. The coralgal reefs could not keep up26,31

with the rapid rise in sea level because their carbonate production
surface areas had shrunk to a minimum through systematic

backstepping, as an overall response to the last deglaciation
sea-level transgression.

Stressors other than sea-level rise can negatively affect coralgal
community growth, such as fluctuations in water turbidity,
temperature, and salinity. However, siliciclastic sediment influx
into the south Texas shelf edge was minimal during the
uppermost Pleistocene transgression20, when coastlines migrated
landward. Initial burial by the TMB was initiated at ~9 ka, and
thereby post-date reef drowning by ~2.5 ka. Temperature and
salinity likely did not trigger the widespread collapse of the south
Texas banks. During the Younger Dryas, sea surface temperatures
dropped only by ~1.5 °C to reach 26 °C, and sea surface salinity
increased from 34 to 36.5 parts per thousand in the northern
GoM38. These nominal changes likely did not modify the coralgal
reef ecology because during the time period of reef development,
sea surface temperatures and salinity are estimated to have
fluctuated with an even greater magnitude, between 25 and 29 °C,
and 34–38 parts per thousand, respectively38.

Terrace hypsometric analysis. Hypsometric curves, generated
from eight banks, identify sets of backstepping terraces at uni-
form water depths, within a range spanning 75–60 mbsl. Four
individual terraces are identified at: 74± 1, 70.5± 1.5, 66.5± 1.5,
and 63± 1 mbsl. The terraces are separated by 2–4-m-high steep
face. As imaged in 3.5 kHz seismic lines, a fifth well-developed

a b c

d e

70
N

50 10
Meters

67.7 (m)

Rim

TerraceTerrace Bac
ks

tep
pin

g

Terrace

Dream bank

Rim

89.1 (m)

63

69–71 m

74-76 m

82–84 m

57.5 61.8 58.6 57.5 58.1 59
67.7

59.9 61.2

82.6

50

75

100

Baker
South
Baker Aransas

North
Hospital Hospital

Southern
Bank Dream

Big and
Small
Adam Blackfish Harte

m
bs

l

3–4 m - Contemporaneous demise

f

Slope

0

90°

50 10
Meters

Fig. 3 True coralgal reef morphologies as evidenced by high-resolution multibeam bathymetric maps. a Detailed bathymetry (contour interval 0.5 m)
displays a clear example of spurs and grooves on the south-eastern margin of Baker Bank (see Fig. 2a for location), b Picture of modern spurs and grooves
in front of the Belize Barrier Reef east of Tobacco Range, (Photo by Brandon Martin) as an analog for Fig. 3a; note the similar scales between both fossil and
modern spur and grove sets. c Oblique bird eye view of Dream Bank displays clear atoll morphologies, rimmed margins enclosing shallow lagoon, at two
different levels. d Side view of Dream Bank (VE: ×20) displays a series of terraces, characteristic morphology of coralgal reef backstepping in response to
punctuated high rates of sea-level rise26. e Slope angle map for Dream Bank clearly identifies the well-defined terraces and faces (shown in 3D), where red
color (steep slopes) represents terrace faces and green color (gentle slopes) terrace flats. f Plotted depths to crest of the ten drowned banks, eight of
which lie within a 3–4m-depth range from 57.5 to 61.8 mbsl. Such a narrow depth range testifies to their contemporaneous demise

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00966-x

4 NATURE COMMUNICATIONS |8:  1046 |DOI: 10.1038/s41467-017-00966-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


common terrace, buried by the TMB, is identified at 82± 1 mbsl
(Figs. 4 and 5a and Supplementary Figs. 1–6). Moreover, a sixth
terrace was mapped at 94± 1.5 mbsl only on Harte Bank—
(the deepest bank with an exposed crest and base at 82 and
102 mbsl, respectively; Supplementary Fig. 7), discovered during
the 2012 research expedition aboard the R/V Falkor cruise.
Because both subsidence and glacio-isostatic adjustment (GIA)
rates are assumed to be identical along this 120 km of the south
Texas shelf, the observed five common terrace depth ranges
can be considered coeval. Despite the absence of systematic
chronologic dates for each of the terraces, their consistent
depth ranges, among several reefs growing over such this long
stretch of the south Texas shelf edge, are interpreted to reflect
contemporaneous and systematic backstepping linked to punc-
tuated sea-level rises.

Paleo terrace depth estimates. Sea-level changes are dependent
on ice-sheet growth and decay, tectonics, and sediment over-
loading of the shelf and vary in different parts of the world,
referred to as relative sea-level (RSL). RSL curves incorporate
eustatic sea-level (ESL) fluctuations and it is usually difficult to
separate the two (RSL and ESL). The Northwestern GoM is an
ideal location for which RSL drivers and their amplitudes are well
constrained and provides the opportunity to examine ESL signals.
The two main drivers for RSL change in northern GoM are GIA39

(0.71 mm per year of uplift since 21,000 calendar years BP), and
subsidence40 (0.5 mm per year from past 21,000 years). Con-
sidering a linear rate for GIA and subsidence for the last degla-
ciation, and the current depth of the terraces on drowned banks,
the depth of each terrace is recalculated and used as indicator of
ESL (Table 1). The corrected depths are compared with an ice-
volume sea-level curve15 to calculate the corrected age range with
uncertainties, during which each of the six terraces was devel-
oped. These calculations are based on two assumptions: the GIA
and subsidence rates are linear, and the development of terraces
occurred at sea level. The uncertainties associated with the age
model are dependent upon the GIA, subsidence, and relation of

paleo water depth to terrace depth. Calculating GIA and sub-
sidence with corrected age model demonstrates that the deviation
in the GIA and subsidence are less than three percent. Further,
atoll and spur-groove morphologies, clearly observed in the high-
resolution bathymetric data sets, indicate that the reefs, when
flourishing, were keeping up with sea level.

Paleo terrace depths and Greenland climate record. The
corrected depths of the observed six common terrace levels,
identified on the south Texas banks, are projected onto a global
eustatic sea-level curve15 (Fig. 5b) and their equivalent ages with
uncertainties are estimated based on these projections. Then,
these ages with their associated uncertainties are projected onto
the NGRIP δ18O record41,42. This climate record from Greenland
is, to our knowledge, the only existing high-resolution upper
Pleistocene climate record during which the six terraces were
formed along the south Texas shelf. The comparison of both
records is the only possible opportunity to attempt to understand
the cause and effect relationship between warm climate intervals,
melting of glaciers (ice-stream/ice-sheet collapse), sea-level rise
events, and terrace development. As observed in Fig. 5b, out of
the six terraces, four terraces correspond to warm interstadials,
one to a stadial–interstadial transition, and one only to a cold
stadial. The NGRIP δ18O record represents climate variations in
Greenland. Figure 5b further illustrates that the number of
occurrence of the terrace depth zones are similar to the number of
warm events observed on NGRIP δ18O record. Moreover, the
correlation of each terrace to a warm interstadial period, with one
exception, is noteworthy. These warm periods, therefore, can
further be linked to ice-sheet/ice-stream collapse events, causing
rapid sea-level rise events of the orders of few meters per century,
which lead to the development of common terrace morphologies
on south Texas shelf banks.

Discussion
In absence of correct chronologic dates, the formation of these
terraces, common to nine coralgal reefs, located along a distance
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of over 120 km on the south Texas shelf edge, indicates that
during the recent peak deglaciation sea level did not always rise
gradually, but rather was characterized by a series of punctuated
and rapid sea-level rise events over decades to one century,
previously only recognized during late Holocene43,44. Because
climate warming and resulting ice-sheet collapses have been
predicted for the future decades and centuries45,46, the steady and
gradual sea-level rise, observed over the past two centuries may,
therefore, not be a complete characterization of how sea level
would rise in the future. Furthermore, there is a scientific need
to utilize advanced technologies, including high-resolution
bathymetry systems combined with systematic drilling of reefs
and accurate dating techniques; this study serves as a guide to
future research endeavors that seek to inform sea-level rise rate
and amplitude projections. Researchers that model sensitivity
of sea-level fluctuations—past and present—require as much
information as possible regarding smaller amplitude events, and
the best place to find this information is from the geological
record. The documentation of decades to century-scale

punctuated sea-level rise events with magnitudes of a few meters
implies that deglaciation and associated sea-level rise is a non-
steady process. Rate of sea-level rise has been observed to accel-
erate since the past two decades47; therefore, these results have
significant implications for the community of science researchers
that examine sea-level rise past and present, and for how society
prepares for coastal flooding and inundation hazards in the
coming decades to centuries.

Methods
Radiocarbon date calibration. Calib Rev 7.0.4 was used to calibrate the radio-
carbon ages collected in 1970s17,19,21. Calibration data set marina13.14c is used
with Delta R = −30± 9. The new calibrated calendar year ages are 11,901.5± 335.5
calendar years BP for the top of Dream Bank and 22,361± 428 calendar years BP
for the base of Southern Bank. These ages are not incorporated into the age model
but are used to only indicate that these reefs grew during last deglaciation.

Data collection R/V Falkor. During a 15-day long research cruise in September
2012 onboard R/V Falkor, funded by the Schmidt Ocean Institute, high-resolution
multibeam sonar and 3.5 kHz seismic data sets were acquired over 10 drowned

60

80

100

120

15.515.014.514.013.513.012.512.0 16.011.511.0

–40

–42

–38

–44M
W

P
 1

B

Age (kyr BP)

O
ld

er
 D

ry
as

Younger 
Dryas

M
W

P
 1

A

50

60

70

80

90

100

110

120

0.0 5.0 10.0 15.0 20.0 25.0

Baker SouthBaker

Aransas North Hospital

Hospital Southern Bank

Blackfish Dream

D
ep

th
 (

m
bs

l)
Percentage of Bank Area

63 ±1 

66.5 ±1.5 

70.5 ±1.5 

74 ±1 

~ 82 ±1 

Current terrace
depths (m)

MB

MB

MB

MB

MB

CH

MB–Multibeam
CH–3.5 kHz CHIRP data

S. Harte

Drowning

a b

65.58 ±1.24

69.17 ±1.68

73.26 ±1.68

76.82 ±1.09

84.94 ±1.03

Paleo terrace 
depths (m)

97.02 ±1.62  94.5 ±1.5 

δ18
O

 (
‰

) 
N

G
R

IP
Ic

e-
vo

lu
m

e 
eq

ui
va

le
nt

 s
ea

 le
ve

l (
m

)

Fig. 5 Punctuated sea-level rise events over timescales of decades to century based on coralgal reef terrace levels and their connection with warming
intervals in the North Greenland Ice Core Project climate record during last deglaciation. a Hypsometric curves for nine south Texas shelf drowned banks,
based on high-resolution multibeam bathymetry data and 3.5 kHz seismic lines, identify the occurrence of a series of terraces common to the banks.
Each depth range (mbsl) of the four common shallower terraces is based on the multibeam data sets, green (63± 1 m), blue (66.5± 1.5 m), purple
(70.5± 1.5 m), and orange (74± 1 m). Two of those terraces (purple and orange), in addition to a deeper one at 82± 1 m, are also identified on the 3.5 kHz
seismic lines (Fig. 4). An additional terrace level is identified on the multibeam map of Harte bank (deepest bank): gray (94.5± 1.5 m). b Paleo terrace
depths (Table 1) with uncertainties are projected onto the ice-volume equivalent sea-level curve15. The age equivalent of each terrace is projected onto the
NGRIP δ18O record41,42 with associated uncertainties (red vertical bands). The Younger Dryas interval is represented by a blue band. Melt water pulses
(MWP) 1A and 1B are represented by vertical light red and yellow bands

Table 1 Estimated Paleo terrace depths and their age range (see details in the text and methodologies)

Depth of
terrace

Inferred age from
terrace depth
(calendar years BP)

GIA (m) Subsidence (m) Total depth
change (m)

Paleo
terrace
depth (m)

Inferred age range from
Paleo terrace depth
(calendar years BP)

59.25± 1.75
(Drowning)

11,375± 275 8.07± 0.20 −5.68± 0.13 2.38± 0.33 61.63± 2.08 11,200–12,400

63± 1 12,300± 200 8.73± 0.14 −6.15± 0.1 2.58± 0.24 65.58± 1.24 12,550–12,800
66.5± 1.5 12,750± 150 9.05± 0.11 −6.37± 0.07 2.67± 0.18 69.17± 1.68 12,900–13,150
70.5± 1.5 13,150± 150 9.33± 0.11 −6.57± 0.07 2.76± 0.18 73.26± 1.68 13,300–13,550
74± 1 13,475± 75 9.56± 0.05 −6.73± 0.03 2.82± 0.09 76.82± 1.09 13,650–13,800
82± 1 14,025± 25 9.94± 0.02 −7± 0.01 2.94± 0.03 84.94± 1.03 14,050–14,150
94± 1.5 14,400± 100 10.22± 0.07 −7.2± 0.05 3.02± 0.12 97.02± 1.62 14,450–14,550
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coralgal reefs on the south Texas shelf edge. The research vessel was equipped with
state-of-the-art instrumentation, including a Kongsberg EM 710 multibeam echo
sounder to collect high-resolution (<0.5 m) bathymetric maps and a high-
resolution seabed mapping (3.5 kHz seismic) system, Knudsen CHIRP 3260, to
image the sub sea-floor sedimentary units. The ancillary components of the mul-
tibeam system included: SeaPath 320 heading, attitude, and positioning sensor,
CNAV positioning correction service, and Valeport SV profiler. Multibeam data
was processed using Caris 7.1 and further imported to Arc G.I.S. 10.1 to build and
investigate the bathymetric maps of these drowned reefs. The CHIRP data was
analyzed utilizing the Echo Post Survey software.

Hypsometric curves—data analysis. Hypsometric curves are generated for nine
of the ten drowned coralgal reefs (Fig. 5a). Bathymetry data sets are clipped into
subdata sets encompassing each individual drowned reef. The total surface area of
each reef is divided into 1 m-depth intervals and the surface area of each interval is
calculated by the number of pixels (each one representing one square meter). To
create a hypsometric curve for each individual reef, the percentage of each one
meter depth interval is determined using their calculated surface area. Each peak in
a given reef’s hypsometric curve represents individual terrace. When the nine
hypsometric curves are plotted together, overlapping peaks identify common ter-
race depth zones. For each common terrace depth zone, a median terrace depth is
determined. Depth uncertainties are evaluated as the difference between the
median terrace depth values and their maximum or minimum depth range.

Computing paleo terrace depth. In the absence of chronologic dates, the current
depths of the terrace zones, ice-volume sea-level curve15, in addition to GIA39 and
subsidence40 rates, are used to estimate paleo terrace depths. First, the terrace depth
zones (with depth uncertainties) are compared with an ice-volume sea-level curve15

to identify the age range (including uncertainties) for the development of each
terrace zone. To estimate the paleo terrace depth, depth change for each terrace due
to GIA and subsidence is calculated by multiplying the estimated age range of each
terrace depth zone with avg. rate of GIA39 (0.71 mm per year) and subsidence40

(0.5 mm per year). The total change in depth is calculated by adding GIA and
subsidence (uplift is considered positive and subsidence is considered negative).
The estimated total depth change is added to the current terrace depth to identify
the paleo terrace depth for each terrace. The paleo terrace depths are further
compared with an ice-volume sea-level curve15 to estimate the age range for the
development of each paleo terrace.

Two assumptions are included in the analyses: the rates of subsidence40

(0.5 mm per year) and GIA39 (0.71 mm per year) are considered linear and 95%
probability ice-volume sea-level curve15 is used.

Data source. Digital data generated by the environmental sensor systems onboard
R/V Falkor, including multibeam, are archived and freely available to the public via
Rolling Deck to Repository and given Digital Object Identifiers—http://www.
rvdata.us/catalog/FK005B

Data availability. All relevant data are available from authors.
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