
1.  Introduction
1.1.  Overview

Mud (mixtures of inorganic and organic fine sand, silt, and clay) can constitute a significant fraction of 
sediment transported by rivers to deltaic zones. For this reason, the fate of mud has many implications for 
the health of deltaic systems, maintenance of navigation channels, and future planning of coastal resto-
ration projects. Yet both the measurement and modeling of this sediment fraction has proven difficult to 
accomplish. One reason for this difficulty is the difference in light and sound scattering properties between 
solid particles (such as mineral grains of silt and sand) and the irregularly shaped porous aggregates of fine 
sediment found in the water column of muddy systems known as flocs (Figure 1). Flocs can form due to 
the presence of fine clay and silt and particle attached biofilms (Droppo & Ongley, 1994; Eisma, 1986). In 
addition to the problems associated with the difference in density and shape between these two forms of 
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on the degree of flocculation, the system is capable of accurately sizing particles to concentrations up 
to 500 mg/L. The system is fast enough to allow for profiling whereby size distributions of suspended 
particles and flocs can be provided at multiple verticals within the water column over a relatively short 
amount of time (approximately 15 min for a profile of 15 m). Using output from image processing 
routines, methods are introduced to estimate the mass suspended sediment concentration (SSC) from the 
images and to separate identified particles into sand and mud floc populations. The combination of these 
two methods allows for the size and concentration estimates of each fraction independently. The camera 
and image analysis methods are used in both the laboratory and the Mississippi River for development 
and testing. Output from both settings are presented in this study.

Plain Language Summary  Rivers carry large quantities of muddy sediment that finds its 
way into river beds, floodplains, lakes, reservoirs, and coastal water bodies. Scientists and engineers rely 
on measurements of sediment size to understand how sediment moves in a river and where it ultimately 
deposits. Yet, measurement of muddy sediments (sediment with particle diameters  63E   microns) has 
proven difficult to accomplish. Reasons for this include the small size of the sediment and the ability of 
small particles to stick together to form aggregates that change size depending on the conditions in the 
flow. For this reason, accurate measurement of the hydrodynamic size of mud cannot be achieved by 
sizing samples in the lab. In this study, we present an imaging system we developed to measure muddy 
sediment aggregates, or flocs, within natural flows. The system is relatively inexpensive, reproducible, and 
is capable of providing higher spatial and temporal resolution of the suspended particle sizes than any 
other imaging system previously developed. In the study we describe the system, test and validate it in the 
laboratory and field, and show how the data can be processed to provide unique information about the 
type and amount of sediment available in the water column.
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suspended matter that exists in these systems (and the associated differences in light and sound scattering 
properties that result), the porous mud flocs also have the ability to change their size and shape as they 
go through different hydrodynamic and biological and ionic conditions in the water column (e.g., Mietta 
et al., 2009).

Measurement and modeling of the flux of muddy fine sediment requires information regarding the mass or 
volume concentration of the sediment and its settling velocity. For solid unaggregated silt and sand, the set-
tling velocity of the material is related to the grain size in a straightforward way through a settling velocity 
equation (e.g., Ferguson & Church, 2004, or Stokes settling velocity). Furthermore, the size of such material 
does not change with time or local flow conditions. Therefore, physical samples of suspended sand can be 
taken to the laboratory to measure both the concentration and size of the sediment, and thereby, settling 
velocity. However, for flocculated mud, the settling velocity is related to the floc size, effective density, and 
the floc shape and porosity–all of which can change rapidly in response to local changes in the water col-
umn. For these reasons, it is not possible to take a physical water sample of mud from the field and then use 
classic methods of sizing or settling velocity estimation (such as a laser diffraction instrument or settling 
column) in the lab or even onboard a vessel to obtain the information needed to characterize the settling 
velocity of the flocculated mud fraction without the possibility of the floc properties measured being differ-
ent than those that existed within the water column. Instead in situ measurements must be made to obtain 
the most accurate characterization of the mud. Characterization of the mud can be accomplished through 
measurement of the floc size (with density estimated in some way) or through measurement of the floc size 
and settling velocity.

A range of methods have been employed to characterize flocs in situ. Such methods include in-situ settling 
columns combined with imaging systems to measure floc size and settling velocity, in-situ imaging devices 
for measuring floc size, and laser-based methods for measuring particle size and volume concentration such 
as the Sequoia Scientific Laser In-situ Scattering and Transmissometry (LISST) 100x and 200x (Agrawal & 
Pottsmith, 2000). Of these, the most commonly used instrument is the commercially available LISST 100x 
and 200x. While the LISST family of instruments are extremely useful, differences in light scattering prop-
erties between solid grains and porous flocs can lead to ambiguity in the ability of the LISST to resolve the 
true size of flocculated mud. This uncertainty arises because Mie small-angle forward scattering (the theory 
on which LISST measurements are based) cannot always accurately measure the true absolute size of large, 
irregularly shaped flocs of variable density (Mikkelsen et al., 2005; Smith & Friedrichs, 2011). Furthermore, 
LISSTs may provide ambiguous data in salinity driven pycnoclines where the Schlieren effect can influence 
measured particle sizes (Chapalain et al., 2019; Karageorgis et al., 2015; Mikkelsen et al., 2008). For these 
reasons, image-based instruments can be welcomed complements to scatter-based instruments when the 

Figure 1.  Example images collected with the Floc AReA and siZing Instrument (the instrument detailed in this study) while deployed in the Mississippi River. 
Both sand and flocs are present in the images on the left with some of the sand grains and flocs labeled. The image on the right does not contain any solid sand 
particles.
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aim of the work is to characterize the flocculation state of mud (Davies & Nepstad, 2017; Fall et al., 2021; 
Mikkelsen et al., 2005, 2006). However, to date, a commercial imaging system suitable for characterizing 
flocs at concentrations typical of riverine and estuarine environments does not exist. Consequently, spe-
cialty in situ imaging systems are typically developed by individual research groups to measure flocs (e.g., 
Benson & French, 2007; MacDonald & Mullarney, 2015; Smith & Friedrichs, 2011).

In this paper we introduce a new low-cost, in-situ profiling floc imaging and image-processing system ca-
pable of providing separate size populations of suspended mud (both flocs and solid particles) and sand 
in the size range of 5–600 μm (in the current configuration) at a higher resolution and frequency than has 
been accomplished in the past. While the system is not commercially available, the system has been built 
with off-the-shelf and 3D printed parts in an effort to make it easier for others to build and improve upon. 
The next section of the study presents a brief review of other imaging devices that have been developed for 
either the measurement of floc size or to obtain floc size and settling velocity. We then highlight the more 
specific purpose of our camera system, describe the parts package, and outline the testing of the instrument 
and the processing procedures used to extract the data.

1.2.  Background: Floc Imaging Systems

Imaging systems that have been developed to characterize flocs can broadly be grouped into those that 
provide only floc size and those that aim to measure floc size and settling velocity. Other differences in-
clude whether the system is designed for deployment at a single depth or for vertical profile measurements, 
whether or not there is realtime feedback between the camera and operator, how the image is illuminated, 
the speed of image acquisition and processing, and the range of sizes that can be accurately measured. Be-
low we briefly summarize some of the systems that have been designed to provide the context for the system 
we are presenting in this study. The section is not intended as an exhaustive review of all methods used for 
characterizing flocs, but instead focuses on those instruments most like ours.

In-situ, image-based settling column and particle sizing systems aim to minimize the disruption to flocs 
and provide information on their size and density, which is closely tied to the environmental conditions 
in which they exist. The addition of imaging sediment within the settling column provides the means for 
a direct measurement of floc sizes and settling velocity through particle tracking. Examples of settling col-
umn imaging systems include the IN Situ SEttling Velocity instrument (INSSEV) (Fennessy et al., 1994) and 
the Particle Imaging Camera System (PICS) (Smith & Friedrichs, 2011). Images from the INSSEV system 
capture settling velocity directly by tracking particle motion frame-by-frame. This method requires that 
disturbances to the system be minimized to reduce external influence on the particles settling within the 
settling column. Stability with the INSSEV system is maintained by locating the system on a weighted tripod 
that is positioned on the bed during sampling (Manning & Dyer, 2002). Thus, the system is limited to meas-
uring particle size and settling velocity at the level of the tripod. The PICS is capable of estimating settling 
velocity and particle size over the full range of the water column. The system can be lowered to a desired 
depth, where a water sample is collected within the settling column and separated from the external flow by 
closing both ends of the settling column. Images are then collected after the settling column is closed. Esti-
mating floc settling velocity with this system is achieved by employing particle tracking velocimetry (PTV) 
to measure the velocity of individual flocs, and particle image velocimetry (PIV) to estimate the background 
fluid velocity by tracking particles smaller than two pixels (Smith & Friedrichs, 2015). For a series of images, 
the settling velocity for a floc is estimated as the vertical component of the average vector subtraction of the 
fluid velocity from the floc velocity. The resolution of the INSSEV and PICS is approximately 20–900 μm 
and 30–1,000 μm, respectively.

These systems were designed for the purpose of measuring floc size and settling velocity at targeted lo-
cations. However, the nature of settling velocity measurements requires longer periods of time to collect 
measurements at a particular field location compared to collecting particle size information alone, as can 
be done with a device such as a LISST-100x. Furthermore, making direct settling velocity measurements of 
slow settling mud is inherently difficult, even in the lab (Tran & Strom, 2017), and adding this measurement 
capability to a system increases the design complexity and cost.
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Systems that only measure floc size, and not size and settling velocity, have also been developed. Notable 
examples of such systems include the Digital Floc Camera (DFC) of Curran et al. (2003), Hill et al. (2011), 
and Mikkelsen et al. (2004), the In situ Particle Imaging Device (InSiPID) of Benson and French (2007), 
the Remote In-situ Particle Settling Camera (RIPScam) of Cartwright et al. (2011), the DFC of Mikkelsen 
et al. (2008), the FlocDrifter platform of MacDonald and Mullarney (2015), and the Pcam system of Markus-
sen et al. (2016). All of these systems take a slightly different approach to acquiring floc images, but all aim 
to photograph flocs within the water column and then use image processing to extract the size of the imaged 
particles. Sequoia Scientific's LISST-HOLO (Graham et al., 2012) is another device that can be used to image 
flocs. The device uses holography to provide 3D reconstructed images of irregularly shaped particles. While 
the LISST-HOLO does provide imaged 3D particle data, the method and instrument is more suited to very 
low concentration environments such as might be found in coastal or open ocean settings.

Key questions and issues to overcome when building floc imaging systems include: (a) what type of camera 
and lens combination to use (implications for image resolution and maximum field of view, power needs, 
settings control, and image storage); (b) how to provide adequate illumination for the image while either 
having a fast enough shutter speed or short enough exposure time to prevent streaking of the moving parti-
cles in the image; and (c) how to extract accurate size information from the images in a timely way.

All of the systems listed above have taken different approaches when addressing these key questions and 
issues. For example, some systems use larger digital single-lens reex (DSLR) cameras with macro lenses 
(e.g., Cartwright et  al.,  2011; MacDonald & Mullarney,  2015; Markussen et  al.,  2016). An advantage of 
this approach is that the cameras come with built in controls and the availability of local power and data 
storage. These systems however also have their drawbacks in that they are larger, may have limitations on 
the length of cord that can be used to control them externally, and have limitations on the magnification 
level of available lenses. Another approach is to use smaller scientific-grade digital cameras that can be 
fitted with microscope lenses (e.g., Benson & French, 2007; Mikkelsen et al., 2004). Such systems are more 
suitable to collecting high-quality images of small objects, are setup for external control, and have an over-
all smaller footprint which could make them easier to waterproof. However, drawbacks to this approach 
include the need to provide power, camera control, and data storage remote to the camera itself. This can be 
accomplished with microcontrollers, solid state hard drives, and battery packs, or through an online remote 
connection to power and a computer.

A combination of the camera sensor size and resolution, and the level of lens magnification, ultimately sets 
the size range of particles that can be imaged with any of these systems. The key trade off to weigh when 
selecting lens magnification is that between resolution and field of view. Higher magnification lenses pro-
vide more resolution, but limits the field of view. Furthermore, as magnification increases, freezing moving 
particles in the image becomes increasingly difficult due to the small field of view and the increase in the 
light needed to adequately expose the images. A unique approach to dealing with the resolution versus 
field of view trade off was used by Benson and French (2007). Rather than choosing a single camera sensor 
and lens combination, they used two different cameras with lenses of different magnification to produce a 
measurable range of 4–3,000 μm with their InSiPID device.

The two-camera system is appealing for the increased range of particle sizes that can be measured, but it is 
also more complicated. For this reason, most floc imaging systems have used a single image sensor and lens 
combination. For earlier systems this produced a rather limited range of particle sizes that could be meas-
ured. For example, the instrumentation package of Mikkelsen et al. (2004) used a DFC with a 1,024 × 1,024 
pixel sensor that could only measure particles down to 135 μm in diameter with a image pixel resolution of 
45 μm per pixel. While the system was novel at the time, improvements in camera sensors now provide the 
opportunity for much higher resolution images. When coupled with the right optics these can provide much 
better resolution. For example both the RIPScam of Cartwright et al. (2011) and the Pcam of Markussen 
et al. (2016) have camera sensor and optics packages that result in image pixel sizes of approximately 4 μm 
and the ability to measure flocs with diameters ranging from 20 μm to several mm (up to 20 mm in the case 
of the RIPScam). The FlocDrifter platform (MacDonald & Mullarney, 2015) was capable of shifting this 
range to smaller sizes with image pixel sizes of 1.5 μm and field of view of 7.7 × 5.1 mm; effectively allowing 
them to measure sizes between 10 and 5 mm.
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Questions surrounding illumination of the image come in two basic forms. The first is, should bright field, 
dark field, or laser-sheet illumination be used? The second is, what method should be employed to ade-
quately expose the image while keeping streaking from moving particles in the image to a minimum? With 
regard to the first question, most have tended to use bright-field illumination (i.e., backlit images). This 
method produces silhouettes of darker suspended particles within a more illuminated fluid background. 
The exception to this is the Pcam of Markussen et al. (2016) in which illumination was provided by a laser 
sheet passing through the field of view. This method produces bright particles on a dark background. For 
the second, two basic approaches have been used. The first is to image a sample of the suspension that has 
been physically removed from the ambient flow to reduce the speed of particles relative to the imaging sys-
tem (e.g., the RIPScam). The second has been to use a strobed light source either in combination with a still-
ing chamber when suspended samples can freely flow through the imaging region (Benson & French, 2007; 
MacDonald & Mullarney, 2015). For slow moving particles, a bright constant light source has also been used 
(Mikkelsen et al., 2004).

All of the imaging methods discussed above require that particles be identified and measured from the 
set of images collected. The volume of data these methods can produce, especially with modern cameras, 
means that the extraction of data needs to be done using automated image processing with minimal user 
input. While care must be taken to build a set of processing routines that accurately measures the particles 
that are there in the image (while removing poorly image particles from the output), this task can often be 
accomplished in a reasonable way as long as good images can be collected (Keyvani & Strom, 2013; Smith 
& Friedrichs, 2015).

1.3.  Objectives

Imaging aggregates in situ remains the most accurate method for sizing mud flocs. Yet, no commercial 
instrumentation exist to accomplish this task, and each research team is left to develop their own system. 
Furthermore, many of the systems that have been created in the past rely on specially machined parts and/
or microcontroller programming that make it more difficult and costly to reproduce.

In this paper we introduce a new, low cost and compact suspended sediment imaging system called the 
FlocARAZI (Floc AReA and siZing Instrument). The FlocARAZI is designed to image flocculated sediment 
that is allowed to pass freely through a variable-width flow-through cell, thereby minimizing interaction of 
sediment with the device and allowing for continuous profiling of suspended sediment over the water col-
umn in riverine and estuarine environments. Power and signal to the camera, and a continuously illuminat-
ed light source, are controlled at the surface through two ethernet cables, allowing for real-time monitoring 
of the camera feed during deployment. Use of off-the-shelf and 3D printed parts helps to keep the overall 
cost of the system low and to make the system more easily reproduced by others.

In this paper we also present two methods that use the output of a previously developed image processing 
routine to provide unique information about the suspension. First, a method is introduced to estimate the 
mass suspended sediment concentration (SSC) of flocculated sediment from the collected image data. The 
ability to estimate SSC from FlocARAZI image data provides the means to collect higher resolution SSC 
information over the water column than could be obtained with physical water samples alone. The sec-
ond processing method utilizes floc and sand size and texture properties to train a support vector machine 
(SVM) learning algorithm to classify suspended sediment particles as either sand or flocculated mud. The 
ability to distinguish between flocs and sand is a key benefit of in-situ imaging devices, especially when 
properties of flocs, rather than the full range of particles in suspension are of interest. Once trained, the 
learning algorithm provides an accurate way to quickly identify sand within the particle data output from 
the image processing routine.

Details pertaining to the imaging system build are presented in the next section (Section 2). Following these 
details we present data used to test the overall ability of the instrument to measure particle sizes accurately 
(imaging and image processing) and discuss a sample deployment on the Mississippi River. In Section 4 we 
provide details pertaining to SSC estimation from the images and show the functionality and calibration of 
the system for a detailed lab experiment and a field application. Section 5 focuses on the classification of 



Journal of Geophysical Research: Earth Surface

OSBORN ET AL.

10.1029/2021JF006210

6 of 20

identified particles as pieces of sand or as mud flocs. Data for this classi-
fication is obtained from both the laboratory and field.

2.  FlocARAZI
The FlocARAZI (Figure 2) consists of a camera mounted to a stepper-mo-
tor-driven linear slide rail stage, and an LED for illuminating the camera 
field of view all contained within a waterproof housing. The camera, step-
per motor, and LED are powered and controlled from the surface by two 
60-meter-long weatherproof Cat6 ethernet cables. A direct connection 
to the surface allows for a real-time camera feed and in-situ adjustment 
of the camera focus and LED brightness. The camera is a monochrome 
4,000 × 3,000 pixel FLIR Blackfly S GigE with a CMOS Sony IMX226 sen-
sor that has a pixel size of 1.85 μm, and is capable of collecting images at a 
rate of up to 10 frames per second. The camera lens assembly consists of a 
5X Mitutoyo plan apochromat, infinity corrected, long working distance 
objective mounted to a ring-actuated aperture stopped down to f/21.4. 
The maximum f-number of the system is f/6.3. The objective is positioned 
at the end of a 78 mm SM1 threaded tube containing an achromatic dou-
blet lens with a focal length of 75 mm. The combination of the 5X Mi-
tutoyo objective with the achromatic doublet lens produces an effective 
magnification of 2X, resulting in an image pixel size of 0.925 μm and a 
nominal field of view of 3.7 × 2.8 mm. A stepper-motor-driven 150 mm 
linear slide rail allows for focusing of the camera during deployment. The 
LED is a 6 V CREE Mt-G2 Q0 on a Noctigon Mt-G20 MCPCP rated for a 
maximum nominal light output of 1,990 lumens at 18.5 watts.

The camera assembly and LED are housed in separate BlueRobotics 3-inch diameter watertight acrylic 
tubes that are rated to 150  m depth. A flow-through cell consisting of two acrylic end caps with a gap 
through which water and sediment are free to flow, separates the camera and LED tubes (Figure 2). The 
acrylic end caps are secured together in concentric alignment with six tapered stainless-steel screws posi-
tioned within six equally spaced through holes along the perimeter of the acrylic end caps. The gap width 
can be adjusted for different applications by placing spacers of the desired thickness between the acrylic end 
caps before tightening the screws; the default gap size is 1.17 mm, but this can easily be adjusted to larger or 
smaller sizes. The camera is set to focus on the center of the flow-through cell gap by means of adjusting the 
linear slide rail stage position through controlling the stepper motor. One-inch aluminum T-Slotted framing 
rails are used to support the acrylic tubes and provide mounting points for a hoist connection and additional 
equipment. To maintain a consistent orientation into the flow, a 36.5 × 31 cm, 1.5 mm thick aluminum plate 
is mounted to the framing to act as a rudder.

While the FlocARAZI is deployed, the camera is powered and transmits a live video feed through one of the 
two 60-meter-long Cat6 ethernet cables, with power supplied by a power over ethernet injector. The video 
feed is displayed and recorded through the FLIR SpinView GUI. The second ethernet cable supplies a signal 
to the stepper motor, for controlling the linear slide rail platform position, and power to the LED. Power is 
supplied to the LED by a DC power supply through four of the 8 available ethernet wires, which allows for 
adjustment of the brightness by changing the current supplied to the LED. Power to the stepper motor is 
supplied by an onboard 7.4 V, 1,500 mAh battery. The remaining 4 wires in the second ethernet cable send 
direction and speed controls to the stepper motor for focusing the camera.

3.  Validation and Test Deployment
3.1.  Sizing: Image Processing and Validation

The ability of the camera system and processing routine to resolve and accurately size particles in sus-
pension was tested by conducting controlled laboratory experiments in which PIV seeding particles were 
imaged. The images were then processed to obtain a size distribution that was compared to a particle size 

Figure 2.  The Floc AReA and siZing Instrument both (a) in its deployed 
state and (b) a close up side view identifying the (1) LED, (2) 1.17 mm 
flow-through cell, (3) Mitutoyo objective and lens assembly, (4) camera 
mounted to a slide rail stage. The black wires entering the camera tube 
control the linear slide rail stepper motor and send a live video feed to the 
surface.
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distribution obtained by sizing the seeding particles with a HORIBA LA-
300 laser scattering particle-size distribution analyzer. The image process-
ing routine was then updated to best match the camera-produced size dis-
tribution with that from the HORIBA LA-300. Due to the relatively large 
size of the FlocARAZI compared to available testing tanks, the modified 
setup shown in Figure 3 had to be used. The setup consists of a 13-liter 
acrylic mixing tank, and the same LED light source and camera assembly 
described in the previous section. The spacing of the flow-through cell 
was maintained by fixing the same 1.17 mm spacers between the LED 
light source and the wall of the mixing tank, though the actual width was 
measured to be 1.55 mm due to added thickness from adhesive material.

Images for these experiments and others are processed following the gen-
eral method of Keyvani and Strom (2013), which employs an automated 
script that identifies all particles within an image, via an ImageJ (Schnei-
der et al., 2012) macro, and removes out-of-focus particles within MAT-
LAB R2013B. The ImageJ macro provides individual particle information 
such as area, perimeter, fit ellipse dimensions, shape descriptors, bound-
ing box dimensions, and particle location within the image, for each 
image. The MATLAB script then uses the previously obtained particle 
location to obtain the pixel intensity matrix of the bounding box for each 
particle within the image set, and determines the clarity and contrast of 

each particle. The clarity of a particle is a measure of the steepness of the pixel gray scale values near the 
edge of the particle. The contrast is a measure of the difference in pixel intensity for the pixels that make up 
the particle. Particles with a clarity value greater than 0.7 were assumed to be in focus and their information 
was retained. For those particles deemed in focus, the equivalent circular diameter of each floc or solid par-
ticle (in pixels), fE d  , is calculated within each image from the measured floc area, E A , as:




4
f

Ad� (1)

A few minor changes were made to the process of Keyvani and Strom (2013) to account for increased image 
resolution of the FlocARAZI camera compared to the camera used in their study. In the background sub-
traction step, the rolling ball radius was increased from 50 to 60 pixels and the sliding paraboloid function 
was included. Additionally, the triangle thresholding function was used instead of the Yen method (Zack 
et al., 1977). It was determined through trial and error that this combination of rolling ball radius and the 
sliding paraboloid function with the triangle thresholding was the most robust method for sizing particles 
in the range of 5–600 μm. The last change to the original processing routine was to include a binary erode 
step after thresholding. The erode function removes one layer of pixels from the edges of objects within the 
thresholded image. This step was included so that the outline of the particles identified by ImageJ better 
matched the expected outline based on the original image.

We determined the lateral resolution of the microscope, as configured, to be 0.925 μm/pixel. This calibra-
tion was found by using a stage micrometer slide with ruled divisions of 0.1 mm. On average, 1,081.1 pixels 
were required to image 10 divisions (1 mm) on the reticule.

Validation of the pixel to micrometer conversion and the image processing routine was performed by com-
paring the camera produced size distribution of 10 and 20 μm PIV seeding particles to the size distribution 
obtained by a HORIBA LA-300 (Figure 4). The HORIBA LA-300 is a laser scattering particle-size distribu-
tion analyzer that is capable of measuring particles in the range of 0.1–600 μm. The particles used for the 
tests were Dantec Dynamics 10 μm Silver Coated Hollow Glass Spheres (S-HGS) and 20 μm Polyamide 
Seeding Particles (PSP). According to Dantec Dynamics, the S-HGS have a mean particle size of 10 μm 
and a size distribution of 2–20 μm and the PSP have a mean particle size of 20 μm and a distribution of 
5–35 μm. Preparation of each sample for sizing with the FlocARAZI camera consisted of sonicating 30 mg 
of the seeding particles within a 30 ml vial of tap water. The sample was then added to the 13 L mixing 
tank. The paddle speed in the mixing tank was set to a mixing rate of 50 rpms, corresponding to a turbulent 

Figure 3.  Mixing tank setup used for validating the Floc AReA and siZing 
Instrument (FlocARAZI) camera. The same 1.17 mm flow-through cell 
spacers were used in an attempt to mimic the flow-through cell present on 
the FlocARAZI.
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shear rate of 90 Hz, which is within the mixing rate range for previous 
floc studies (Kumar et al., 2010; Mietta et al., 2009; Zhu et al., 2015). The 
camera collected one image every second for 20 min. A size distribution 
was created (Figure 4) for the 20 min of image size data following the 
aforementioned image processing routine. This process was carried out 
for both the S-HGS and PSP suspensions. Preparation of the sample for 
sizing with the HORIBA LA-300 followed a similar procedure, however, 
the sample was first diluted to a concentration suitable to achieve the 
light transmission requirements of the system. The seeding particles in 
the suspension were measured with the HORIBA LA-300 three separate 
times and the resulting distributions were averaged to obtain the particle 
size distributions presented in Figure 4. The size distribution produced by 
the FlocARAZI camera and the HORIBA LA-300 are quite similar, with 
only a slight difference in the mean particle size (  1E  μm) and standard 
deviation (  1E  μm) (Table 1).

The comparison outlined above shows that, with proper calibration of 
the conversion from camera pixel length to physical length and the image 
processing routine, the FlocARAZI can produced particle size distribu-
tions that compare favorably to those of the HORIBA LA-300. Additional 
testing with the camera in the same lab setting has produced favorable 
results for flocs in the size range of 50–85 μm when compared to older 
lab cameras that have previously been used and calibrated (Keyvani & 
Strom,  2013; Tran & Strom,  2017). The upper limit of the particle size 
range that the camera system can accurately capture is dependent on the 
width of the flow-through cell gap and the field of view of the camera. 
Therefore, the width of the flow-through cell gap should be adjusted de-
pending on the floc size range and overall SSC expected to be imaged. 
With the current flow-through cell gap and good lighting, the FlocARAZI 
camera system can accurately size particles in the range of 5–600  μm; 
600 μm is approximately one-half of the gap size (Tran et al., 2018).

3.2.  Field Deployment Example

Validation of the FlocARAZI's operation in the field has been tested 
through deployments of the system within the lowermost sections of 
the Mississippi River. The FlocARAZI has been successfully deployed to 
depths of up to 36.5 m. During these deployments, images collected with 
the FlocARAZI (Figure 1) have provided floc size information within the 

main channel of the Mississippi River, its distributaries, and the plume within the Gulf of Mexico at the 
exit of South and Southwest Pass. Images were collected at a rate of two images per second, which by trial 
and error, was determined to be an adequate rate for allowing sediment to flush through the camera field 
of view, reducing the likelihood of imaging the same particles in successive images. For a typical 16–18 m 
vertical profile, the data acquisition process with the FlocARAZI took approximately 15 min. For example, 

one such profile over 16 m took 14 min. During that time, the FlocARA-
ZI captured 1,162 images. From those images 111,902 in focus particles 
where identified with 51,672 of those particles being larger than 30 μm. 
Taking data at this rate also requires a large amount of data storage space. 
For example, during a 9  days long survey, around 59,000 images were 
collected with the FlocARAZI, requiring nearly 700 GB of drive storage 
space. A typical image collected during the survey contained between 50 
and 150 in focus particles. Observations with the FlocARAZI revealed 50E d  
floc sizes in the range of 70–130 μm within the freshwater reaches of the 
Mississippi River Delta, with the largest flocs observed to be in the range 
of 400–500 μm (Osborn et al., 2020).

Figure 4.  Size distribution comparison between (a) 10 μm and (b) 20 μm 
seeding particles sized with a HORIBA LA-300 and Floc AReA and siZing 
Instrument (FlocARAZI).

Particle size (μm) Sizer Mean (μm) Std. (μm)

10 HORIBA 10.9 3.7

FlocARAZI 11.8 3.8

20 HORIBA 23.6 6.3

FlocARAZI 23.5 7.2

Table 1 
Particle Sizing With HORIBA LA-300 and FlocARAZI Camera
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4.  Estimating Suspended Sediment Mass Concentration From Images
The mass concentration of suspended sediment both in the field and laboratory often needs to be measured. 
In this section we present a method for extracting mass concentration measurements from images collected 
with the FlocARAZI that can be used to supplement physical water column samples. Because flocs can be 
distinguished from sand in these images, the method provides a means of estimating the mass of sand and 
mud separately under certain assumptions, something that cannot be accomplished with traditional laser or 
optical methods. The method cannot replace physical sampling because it needs to be calibrated. However, 
the method does provide a means of supplementing physical sampling. Here we first present the method 
that was developed in tandem with a controlled laboratory experiment. We then show the method applied 
to images and physical samples of SSC from the Mississippi River.

4.1.  Method Overview

To measure SSC one must know both the dry mass of the sediment within a suspension sample (or the dry 
volume and sediment density) and the total volume of the sample. To obtain SSC measures from images we 
estimate the volume of sediment imaged per volume of suspension sampled and then convert the sediment 
volume to a mass using a specified sediment density. For example, the average mass concentration, E C , from 
a set of E n number of images can be defined as,

C
V

n V

i

n

j

k

a ij f ij

IM

   1 1


, ,� (2)

where E k is the number of particles in each image, V f ij,
 is the E j -th imaged floc or particle within the i -th 

image,  ,a ijE  is the apparent density of that particular floc or particle, and V
IM

 is the volume of the region 
imaged by the camera. Therefore, to estimate E C , one must know the volume of the individual particles, the 
density of the particles, and volume of fluid being imaged.

The most straightforward of these three parameters to estimate is the particle or floc volume, V f  :

V df f

6

3� (3)

These volume estimates are made for each identified particle in each image using the projected area of the 
particle or flocs (Equation 1). While Equation 3 does not provide a true measure of particle volume due to 
the 2D nature of the images, it is reasonable to expect it to provide a non-biased estimate since particles are 
measured in suspension without any directional preference over thousands of particles.

Density estimates for each particle are more complicated to obtain. In each image, it is possible that identi-
fied particles could be a solid mineral (sand or silt particle), a porous to semi-porous mud aggregate or floc, 
or even organic and biological material such as fine particulate organic matter (FPOM) or plankton. The 
method presented here for estimating particle density does not account for organic or biological material. 
Though, if organic and biological material represent a small fraction of imaged particles, their effect on the 
overall SSC would be expected to be minimal. If solid mineral particles can be identified, then the density of 
those particles can be set to the density of silica sand ( 

a
 2650 kg/m3 irrespective of particle size). Howev-

er, estimating the density of the mud fraction is complicated by the irregular structure of mud flocs. The ir-
regular and porous structure of flocs means that floc density can vary from floc to floc and for any individual 
floc with size. For example, the overall floc density has been shown to be a non-unique power function of 
floc size (Dyer & Manning, 1999). Due to the irregular and compounding packing structure of flocs, and the 
measured power-law behavior of floc density with floc size, floc density is often modeled assuming the flocs 
are 3D fractal aggregates (Flesch et al., 1999; Li & Ganczarczyk, 1989; Maggi et al., 2007) even though it is 
unlikely that flocs are strictly fractal in nature. Within this framework, the apparent floc density, aE  (defined 
as the floc's dry mass divided by its wet volume), depends on the characteristic floc size and the density, size, 
and arrangement of the constituent primary particles that make up the floc:
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In Equation 4, 0E  is the density of the primary particles that make up the floc, fE d  is the equivalent spherical 
diameter of the floc, pE d  is the equivalent spherical diameter of the primary particles (Bowers et al., 2017), 
and 3fE N  is the 3D fractal dimension of the floc. The 3D fractal dimension is not a quantity that can be meas-
ured directly from two-dimensional (2D) images. Therefore, to obtain 3fE N  , and hence floc density, we used 
the model developed by Maggi and Winterwerp (2004) for converting from a 2D perimeter-based fractal 
dimension to a 3D fractal dimension (see the Appendix A for details). This model calculates the 3D fractal 
dimension, 3fE N  , using each measured floc perimeter and area.

The last measure needed for the estimate of E C from Equation 6 is the imaged volume, V
IM

 . A simple esti-
mate of V

IM
 can be obtained by multiplying the field of view by the sampling gap size or width created by 

the acrylic end caps of the camera and light housing (Figure 2). However, the gap size between the acrylic 
end caps is larger than the camera's depth of field. This means that the volume associated with in-focus par-
ticles would be equal to or less than the physical gap size. Furthermore, the perceived imaged volume could 
be a function of imaged particle size. For example, larger particles could be more likely to be in focus within 
the depth of field of the camera compared to smaller particles that have a narrower margin to be in focus. 
To account for this phenomena, we developed a variable width for the imaged volume that is dependent on 
particle size. The variable width accounts for the smaller particles that are assumed to be within the imaged 
volume, but not in focus within the image. For our purposes, we took the variable sampling width, E w , to be 
described by a logistic function where the width increases with particle size within a defined range, then 
asymptotically reaches a constant width:

 
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 ( )0
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1
f k d df

Ww d
e

� (5)

The constant width, E W  , should be taken to be the smaller of either the width of the gap or the depth of 
field of the camera, as either of these widths could limit the volume observable by the camera. We take the 
logistic growth rate, E k , and the sigmoid's midpoint, 0E d  , as being experimentally determined values that are 
dependent on the depth of field of the particular camera and optics setup.

The average mass concentration, E C , including the modification to the image volume by Equation 5 is com-
puted as:
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where IME L  and IME H  is the image width and height, respectively.

4.2.  Experiments to Test and Calibrate the Method

We ran a series of laboratory mixing tank experiments over a range of known SSC values and turbulent 
mixing rates to calibrate and test the methodology outlined above for estimating E C from images.

The experiments were conducted in the same aforementioned 13-liter mixing tank (e.g., Tran et al., 2018) 
(Figure 3). For each run, a known mass of sonicated kaolinite clay was added to the mixing tank to obtain a 
known SSC. The concentrations tested include 20, 100, 200, 300, 400, and 500 mg/L. An additional 5 ml of a 
300 mg/L xanthan gum solution was added to the mixing tank to encourage flocculation. The experiments 
were conducted at two different turbulent shear rates, E G , of approximately 50 and 90 Hz. Before images 
were collected for the experiment, the flocs formed from the sonicated sediment were allowed to mix for 
three hours to ensure that an equilibrium size distribution had been reached. After three hours, the camera 
was set to record one image per second for 15 min. The same procedure was then repeated for the remaining 
mass concentrations and turbulent shear mixing rates. An optical backscatter sensor (OBS) was also placed 
within the tank to check for settling. Output from the OBS corroborated the conclusion suggested by visual 
inspection of the tank bottom; that being that no settling occurred in any of the test cases.
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Images from the experiments were processed to provide floc size infor-
mation for each floc identified within the set of collected images. This 
size information was then used in conjunction with the model developed 
by Maggi and Winterwerp (2004) to estimate a 3D fractal dimension for 
each floc. Assuming a characteristic primary particle density and size, 
the apparent density of each floc was estimated using Equation 4. The 
mass of each individual floc was then estimated by multiplying the ap-
parent density by its equivalent spherical volume. For the analysis, the 
primary particle density was set as 2500 kg/m3 and pE d  was taken to be 
6.6 μm, which is the mean particle size of the kaolinite clay mixture as 
measured by the HORIBA particle size analyzer after sonication of the 
clay and sodium hexametaphosphate suspension. 0 2500 kg/m3 was 
used instead of   2600sE  or 2650  kg/m3 in an attempt to account for the 
potential of aggregates of size 6.6 μm being slightly less dense than the 
raw mineral.

A summary of the experimental conditions and resulting floc size statis-
tics at equilibrium is given in Table 2.

4.3.  Concentration Estimation Results

For all test scenarios, SSC was estimated for each minute of the collected 
image series, both with and without the inclusion of the variable sam-

pling volume width (Equation 5). The SSC estimates without the inclusion of the variable width was used 
to inform the parameters of the variable width logistics equation, namely E k and the sigmoid's midpoint, 

0E d  . The average of the estimated uncorrected SSC for each scenario is plotted in Figure 5a using a con-
stant gap or sample volume width, E w , against the known concentration. In all cases except the lowest two 

SSC (mg/L) E G  (Hz) 16E d  (μm) 50E d  (μm) 84E d  (μm)

20 50 15 27 54

20 90 15 34 62

100 50 55 98 141

100 90 30 43 58

200 50 79 109 150

200 90 49 67 93

300 50 100 141 198

300 90 54 77 108

400 50 116 171 245

400 90 64 94 132

500 50 125 195 280

500 90 68 104 151

Table 2 
Average Floc Sizes for Each Concentration and Mixing Rate

Figure 5.  (a) Suspended sediment concentration (SSC) estimated using the camera particle data versus known concentration in the mixing tank and field. (b) 
A variable width curve, dependent on floc size, used to account for particles outside of the cameras depth of field. (c) SSC estimated with the inclusion of the 
variable width curve. The slope of the best fit line, shown here, will be used as an additional correction factor to map the estimated SSC to a corrected SSC.
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concentrations (20 and 100 mg/L), the SSC estimates from the images are 
greater than the known SSC by a factor of  4.4E  . That is, the relationship 
between E C estimated from the images and E C known through the addition 
of a known mass to the mixing tank appears to be linear across the ma-
jority of the concentrations.

The variable sampling width, ( )fE w d  (Equation 5), parameters of E k and 0E d  
were tuned to bring the lower concentration experiments more in line 
with the linear trend of the higher concentration experiments. The re-
sulting sampling volume width equation that achieves this end is:

 


 0.2( 27)
1.55( )

1
f d f

w d
e

� (7)

Equation 7 is plotted in Figure 5b. The result of defining the sampling 
volume width using Equation 7 on the relationship between estimated 
SSC from the images and the known SSC is shown in Figure 5c. The line 
of best fit, with an intercept passing through the origin, has a slope of 
4.5047 and a 2 0.9755E R  . It is this fit equation that is used to map origi-
nally estimated SSC to corrected SSC. Values of actual, original estimates, 
and corrected SSC are given in Table 3 along with the percent difference 
between the actual and image-based corrected SSC estimates. The stand-
ard deviations for the corrected SSC estimates only deviate slightly from 
the corrected SSC, revealing that concentration estimates for each min-
ute only deviate slightly from the full 15 min average.

4.4.  A Field Application

We also performed a calibration of the image derived SSC using field data from the Mississippi River where 
we had paired image and physical concentration measurements over a vertical profile within the upper 
most portion of Southwest Pass from a January 2021 survey. The physical concentration measurements 
were collected with a US P-6 point sampler over a depth of approximately 20 m. Approximately 1 L sam-
ples were collected at 5%, 25%, 50%, 75%, and 95% of the flow depth with the P-6. The water samples were 
filtered on site with 1 μm glass fiber filters and the liquid volume of the sample recorded. Once back to the 
lab, filtered water samples were allowed to dry in an oven at 80 degrees Celsius for 24 hr. The sample and 

filter were then weighed and the mass of the filter subtracted to obtain 
the mass of the sample. Mud concentrations over the depth at the loca-
tion ranged from near 100  mg/L near the free surface down to almost 
500 mg/L near the bed. Following the same process as outlined in the 
section above, we calibrated image-derived SSC both with and without 
a variable sampling width. The resulting calibration for each is shown in 
Figure 5 in red.

4.5.  SSC Estimate Dependence on dp

The two user-selected input parameters for the routine used to estimate 
SSC are the primary particle density, 0E  , and the primary particle char-
acteristic diameter, pE d  . The model's dependence on 0E  is linear. Conse-
quently, changing the specified 0E  will linearly scale the estimated SSC. 
However, the estimated SSC is not linearly dependent on pE d  (Equation 4). 
The dependence of the uncorrected estimated SSC on pE d  was investigated 
for all test scenarios by observing the shape and magnitude of estimated 
SSC after setting pE d  equal to 2.6 and 10.6 μm (Figure 6). The general be-
havior of the model to a change in pE d  is a decrease in the magnitude of 
estimated SSC with a decrease in pE d  , and an increase with increasing pE d  . 

Actual 
SSC 
(mg/L)

Mixing 
rate (Hz)

Estimated 
SSC (mg/L)

Corrected 
SSC (mg/L)

Corrected 
SSC Std. 
(mg/L)

% 
diff.

20 50 83.4 18.5 0.8 7.4

20 90 91.6 20.3 0.6 1.7

100 50 450 99.8 2.1 0.2

100 90 530 118 2.0 17.6

200 50 831 184 3.8 7.8

200 90 987 219 2.2 9.6

300 50 1,313 291 8.1 2.9

300 90 1,562 347 1.9 15.6

400 50 1,783 396 7.7 1.0

400 90 1,744 387 4.1 3.2

500 50 2,007 446 7.7 10.9

500 90 2,433 540 3.4 8.0

Table 3 
SSC Estimated From Image Data and Linearly Scaled Corrected SSC 
Estimate

Figure 6.  Estimated suspended sediment concentration (SSC) and line of 
best fit for two different values of pE d  while maintaining 0 2500 kg/m3 .
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The linearity of the estimated SSC appears to hold for both choices of 
pE d  . The slope of the line of best fit with an intercept passing through the 

origin is 2.58 (  2 0.9464E R  ) and 6.0422 (  2 0.9824E R  ) for pE d   = 2.6 and 
10.6, respectively.

In the same way that the estimated SSC for the base scenario was scaled 
by the slope of the line of best fit through the SSC estimates, the SSC esti-
mates produced with the changed pE d  were scaled by the slope of the line 
of best fit through the SSC estimates. The percent difference between the 
corrected SSC and the known SSC is presented in Table 4 along with the 
base scenario with a pE d  of 6.6 μm. Reducing the primary particle size by 
61% from 6.6 to 2.6 μm causes an average percent difference in corrected 
SSC of 11.4%. The largest observed percent difference is 28.4%, which oc-
curred for a pE d  of 2.6 μm for the 100 mg/L test at a mixing rate of 90 Hz. 
Increasing pE d  by 61% to 10.6 μm results in an average percent difference 
in uncorrected SSC of 7.8%. The average percent difference for the base 
case where  6.6pE d  μm is 7.2%.

The model presented here for estimating SSC from particle data collected 
with the FlocARAZI camera system was developed by taking the char-
acteristic primary particle diameter as the median particle size of the 
test sediment and assuming a density of 2,500 kg/m3 . Since the proposed 
model includes linearly scaling the uncorrected SSC by a known SSC 
measurement, the input parameter 0E  has no consequence on the final 
corrected SSC output from the routine. Specifying 0E  simply provides a 

starting point for estimated SSC that will be corrected by a physical measurement, or to provide relative 
concentration estimates between a series of deployments with the FlocARAZI. The choice of pE d  , however, 
influences both the magnitude and, to a lesser extent, the shape of estimated SSC as shown in Figure 6. 
The difference in magnitude will be accounted for when linearly scaling the uncorrected SSC. Though, the 
difference in shape is not accounted for with the linear scaling. Therefore, the importance of the specified 
value for pE d  should be considered when a wide range of SSC and floc sizes are observed. The tests presented 
here show that within a range of pE d  values that could be reasonably observed in nature, the response of the 
model to changes in pE d  is close to linear.

5.  Identifying Sand Within Particle Data
When deploying the FlocARAZI in a high energy sand-bed river such as the Mississippi River, sand grains 
are likely to be in suspension and imaged as part of the suspended load along with flocs. Therefore, a 
method for identifying sand grains within the image data is desired to allow for analysis of the mud data 
separated from the complete data set.

To achieve the separation of sand particles from mud aggregates of similar size, we used an optimizable 
SVM binary classifier within the MATLAB Classification Learner Toolbox. SVM is a supervised machine 
learning algorithm that attempts to classify data by finding the hyperplane that best separates the two class-
es. The hyperplane is a flat (n-1)-dimensional subspace within the n-dimensional space, where n is equal to 
the number of characteristics provided to the classifier to describe the data (Noble, 2006). For example, the 
characteristics from the particle data could include area, perimeter, aspect ratio, etc. In addition, SVM can 
separate nonlinear data by including a kernel function, where the kernel function allows for transforming 
the data to a higher-dimension feature space and fitting a hyperplane within the higher-dimensional feature 
space. The resulting higher-dimensional hyperplane can then be mapped to the original n-dimensional 
space, resulting in a non-linear curve or non-flat surface separating data classes within the n-dimensional 
space, for n = 2 and n = 3 and greater, respectively. A trained SVM model can then classify new data based 
on which side of the curve or surface the new data is located.

Actual SSC (mg/L) Mixing rate (Hz)

% difference

pE d  (μm)

2.6 6.6 10.6

20 50 5.0 7.4 13.2

20 90 17.4 1.7 5.7

100 50 13.9 0.2 7.0

100 90 28.4 17.6 12.4

200 50 0.4 7.8 11.7

200 90 17.4 9.6 5.7

300 50 1.2 2.9 4.0

300 90 22.8 15.6 12.0

400 50 3.9 1.0 0.2

400 90 0.9 3.2 5.2

500 50 17.7 10.9 7.4

500 90 7.4 8.0 8.5

Table 4 
Percent Difference of Linearly Scaled Corrected SSC Estimates From the 
Actual SSC for Different Values of pE d
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5.1.  Data Preparation

Particle data from images collected both in the field and in the lab were 
used for the training and testing of the SVM. The field data is from images 
collected on the lower Mississippi River near the Bonnet Carré Spillway 
(BCS) in December 2019. This area of river is characterized by a subaque-
ous sand bar that runs adjacent to the BCS, which is positioned immedi-
ately downstream on the inside of a bedrock bend (Nittrouer et al., 2012). 
Images for this analysis were collected both over the thalweg within the 
bend and over the subaqueous sand bar. Laboratory data was included to 

train the model with an extended range of floc and sand data past what was observed in the field. The lab 
floc data came from the tests performed for the concentration estimation experiments. Additional sand par-
ticle data was obtained by sieving bed sediment, originating from the New River near Radford, VA, through 
seven mesh sieves, ranging in size from 63 to 500 μm. Sand from each sieve was imaged and the processed 
data was included with the training data. Each particle from the lab and field images was then identified by 
eye as being either sand or not sand, and the row of data from the image processing routine associated with 
the identified particle was tagged with a one or zero, respectively. Any particle smaller than 63 μm was con-
sidered to not be sand. The resulting combined data set consisted of 852 sand particles and 13,372 non-sand 
particles. The process of identifying the sand grains in this set of images took roughly 7 hr. The combined 
data was then split into training (80%) and testing (20%) data sets.

5.2.  Training and Testing SVM Classification Model

Training the optimizable SVM model consisted of importing the training data set into the MATLAB Clas-
sification Learner App, selecting a model validation method, selecting which features to train the model 
with, and optionally performing a principal component analysis (PCA) on the selected features to reduce 
the feature space. In addition, optimizable components of the model include the kernel function, box con-
straint level, kernel scale, and standardization of the data. For the developed model, an initial PCA revealed 
that the majority of information is provided by the area, perimeter, major and minor axis of an ellipse fit 
around the particles, and the contrast of the particle. Therefore, these features were selected as the train-
ing features, with the remaining features excluded. These five features were then passed through the PCA 
within the classification learner app, and three of the principal components were retained. The reduced 
particle data, within the principal component space is then used as the particle characteristic data that 
defines the location of sand and non-sand particles within the hyperspace. A Gaussian kernel function 

and the option to standardize the data were selected. The SVM box con-
straint level and kernel scale were selected as optimized parameters. That 
is, the Classification Learner App automatically selects and tests different 
combinations of values for the box constraint and kernel scale, and up-
dates the optimized parameters based on a selected optimizer, in this case 
Bayesian optimization was selected. Finally, 5-fold cross-validation was 
implemented to gauge the accuracy of the model.

The resulting classification model had a 99.67% accuracy with the train-
ing set. Applying the model to the reserved test set produced an overall 
accuracy of 99.75% and a true positive rate of 97.39% and 99.89% for the 
identification of sand and non-sand, respectively (Table 5). The separated 
floc and sand particle size distributions from the test data set are present-
ed in Figure 7.

6.  Discussion
6.1.  FlocARAZI: Range of Conditions for Deployment and 
Comparison With Other In-Situ Cameras

In its current form, the FlocARAZI is suitable for imaging suspended par-
ticles in the size range of 5–600 μm. We have tested the system in both 

Particle 
type

No. of 
particles

No. correctly 
identified

True positive 
(%)

False 
discovery (%)

Floc 2,692 2,689 99.89 0.15

Sand 153 149 97.39 1.97

Table 5 
Results From Testing the Trained SVM Model on Unseen Particle Data

Figure 7.  Volume-based particle size distributions for the floc and sand 
fraction and combined distribution. The distribution data is taken from the 
classification test data set.
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river and coastal ocean settings in depths from 0.25 to approximately 50 m. The range of mean raw flow 
velocities in these settings has ranged from roughly 0–2 m/s. However, what is more important than the 
raw velocity of the flow in determining image quality and data quantity is the relative difference in veloc-
ity between the camera system and the particles within the flow. Some movement of fluid is needed for a 
suspension to pass through the imaging window, but rapid movement of particles through the window also 
leads to particle streaking in the image (at least with the current camera, lens, and lighting). In the open 
ocean or lake, flow through the camera can be produced by the camera being lowered through the water 
column. In a river, the difference in velocity between the camera and suspension can be reduced by letting 
the camera and boat drift with the flow. In any vessel mounted environment, waves can present a significant 
challenge to high quality images as the wave action can cause the boat, and hence camera, to accelerate 
rapidly through pitch, roll, and heave. Adding weights to the camera frame helps to dampen, but not com-
pletely remove, the adverse effects of wave action.

We have used the camera in the lab and field in mud concentrations ranging from approximately 20 to 
500 mg/L. For these cases, a flow-through gap size, that is, the distance between the acrylic end caps of 
the camera and light housing (Figure 2), of 1.17 mm has worked well. In lower concentrations, such as the 
open ocean, it might be advantageous to increase the size of the flow-through gap to increase the number 
of particles captured in each image. Increasing the gap size might also be advantageous if particles on the 
order of a mm or larger in diameter are expected in suspension. For concentrations higher than 500 mg/L, 
reducing the width of the gap might work to extend the range of concentrations in which images can be col-
lected without significant overlapping of particles or flocs within the images that can cause bias in the size 
estimates from the image processing routines. A trade off with decreasing the gap size could be that more 
images are needed to produce a distribution in lower concentration environments and that the upper end of 
the measurable size range could start to be constrained by the physical gap width. For more discussion on 
bias caused through overlapping particles in the image and gap size see Tran et al. (2018).

The relatively simple nature of the construction of the FlocARAZI allowed for development of an in-situ 
particle sizing system that can be constructed with the cost of parts at less than $4000 USD at the time of 
publication. The direct video stream to the surface provides the user the ability to know the condition of 
suspended sediment and image quality in real time. If images are out of focus, the stepper motor controlled 
platform, on which the camera is mounted, can be easily re-positioned while the FlocARAZI is deployed. 
With improvements in digital camera sensor technology over the past two decades, the FlocARAZI is able 
to collect high resolution 4000 × 3000 pixel images at a collection rate up to 10 frames per second with a 
compact and easy to handle form factor. Additionally, compared to the DFC, InSiPID, and PICS, which use 
a flashed light source that requires syncing with image acquisition, the FlocARAZI uses a continuously 
illuminated light source, reducing complexity and potential sources of equipment malfunction. Due to the 
compact nature of the system, a second camera and lens assembly could be added to the system with a 
different flow-through cell gap width, similar to the InSiPID camera system, to increase the range of ob-
servable particle sizes, depending on the intended application. However, as it stands a range of 5–600 μm 
is a reasonably large range of particle or floc sizes when mud in riverine and estuarine environments are 
of interest.

An additional benefit of the flow-through cell design utilized by the FlocARAZI is the ability to collect a 
large number of independent floc observations in a short period of time while profiling, when compared 
to imaging systems that rely on imaging flocs within a settling tube at discrete locations over the water 
column. For example, profiles with the PICS system have been reported to collect around 6,000 particle ob-
servations for a single profile consisting of seven sampling depths at a station with a total depth of 13.6 m. 
This profile took approximately 22 min. In comparison, during a profile within the Mississippi River that 
took 14 min at a station with a depth of 16 m, the FlocARAZI captured 1,162 images and 111,902 in focus 
particles, with 51,672 of those particles being larger than 30 μm. While the FlocARAZI is capable of collect-
ing a large number of independent floc observations in a short amount of time, the system is fundamentally 
limited in its ability to characterize flocs because it lacks the ability to measure the settling velocity of parti-
cles of a given size. This means that it cannot be used to obtain direct estimates of floc excess density along 
with floc size. Therefore, an ideal system for floc characterization might be to combine the FlocARAZI with 
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a system like the PICS to obtain both a large number of independent floc size observations and floc settling 
velocity information.

6.2.  SSC Obtained From Images

A common method for estimating SSC within aquatic environments is to relate SSC from physical samples 
to turbidity measured by an OBS. Others have estimated SSC with LISST instruments by simply assuming 
that the measured sediment only consists of dispersed minerals with a particular density. However, density 
becomes difficult to constrain in natural environments due to flocculation and the combining of different 
types and amounts of organic and mineral matter (Fall et al.,  2021). In this study, we have presented a 
method for estimating SSC from images. We see estimating concentration from the FlocARAZI images as a 
unique opportunity to have co-located size distributions, volume concentration estimates per size class, and 
total mass concentration associated with the mud and sand fractions.

To the best of our knowledge, only one other researcher has attempted to estimate SSC from a micro-
scope-lens, image-based method (Antonenkov, 2016). Antonenkov (2016) developed an algorithm for iden-
tifying sand grains within images and related the pixel area of the sand grains to an equivalent circular 
diameter. The volume of the sand was then assumed to be equal to the volume of a sphere of the equivalent 
circular diameter and the mass was estimated by assuming a constant density for all sand grains. The SSC 
was then estimated as the sum of the mass of observed sand divided by the volume of the observable field of 
view for the collected images. This method corresponds exactly to the approach we take for estimating the 
contribution of sand to the total SSC estimate. Our method expands upon the work of Antonenkov (2016) to 
include a method for estimating SSC when flocs are present in suspension and for improving the accuracy 
of SSC estimates for particles in the smaller size ranges through the use of a variable sample width that is 
dependent on particle size.

While we see our image-based SSC estimation method as a step in the right direction, there are still signifi-
cant limitations with the method that need to be considered. In particular, similar to estimates of SSC from 
a LISST, our image-based SSC estimation method suffers from a lack of a-priori information regarding the 
density of any given floc. We attempted to constrain the floc density problem through the use of fractal mod-
el for floc structure that relies on a single 3D fractal dimension and known properties of size and density of 
the primary particles of the flocs. While this may help to produce the overall general trends of decreasing 
floc density with size, the strict fractal model itself is still likely to be a flawed model for natural aggregates. 
Furthermore, even the density of the primary particles is difficult to measure, and it is not constrained to 
constant values or known relations (Fall et al., 2021). Added to these complications is the task of estimating 
a 3D fractal dimension from a 2D image, for which a well-tested method has yet to be developed.

The method we outline in the paper is our attempt to get as close as possible in our estimation of SSC from 
image data without directly using measured excess floc density from something like a settling test. Yet even 
if the models we employ, such as the fractal model for floc density, are correct, there is no way to obtain all of 
the needed parameters for these models from the image data alone. For this reason, the method can only be 
used as an estimate of SSC if it has been calibrated with physical water column samples or measures of floc 
settling velocity from the site of interest over the concentrations of interest. Use of a site-specific calibration 
equation (or the calibration factor since the relationship between image estimated SSC and measured SSC is 
a direct variation; see Figure 5), accounts for a number of model parameters that have inherent and site-spe-
cific variability. Such parameters include the empirically derived relation used to obtain 3fE N  from 2fE N  , the 
use of a single characteristic pE d  , estimating floc volume as the equivalent spherical volume, and variability 
in primary particle density.

Another limitation of the image-based SSC estimate is that it assumes that all of the suspended sediment 
is greater than 5 μm in size (the lower limit of resolution associated with our current system). We’ve taken 
this to be reasonable for our suspensions given the visual high degree of flocculation in the lab and field, and 
given that the method over estimates concentration in general in all cases in which we’ve tested it. However, 
situations where flocculation is not significant and grain size is small (less than 5–10 μm) could result in a 
significant fraction of the total suspended sediment mass not being captured in the estimate.
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Further advances in estimating SSC from images will likely come from better models of floc density as a 
function of 2D shape and size. To obtain this, both measurement of density (possibly from settling velocity 
measurements) and measures of the three dimensional structure of flocs and how they related to their 2D 
projections are needed. The work of Fall et al. (2021) is a helpful example for considering how to combine 
data from multiple instruments to better constrained poorly measured components of the floc fractal mod-
el. Additionally, Pearson et al. (2021) recently developed a method to differentiate between components of 
the suspended mass associated with the sand and mud fraction by using a combination of sound and light 
scattering instruments. Comparison of data from such a system could help to better test and constrain the 
differentiated suspended mass from images making use of the sand and floc SVM segregation.

6.3.  Limitations and Future Use of the SVM for Sand Identification

Observing suspended sediment characteristics with an image-based device provides the unique opportu-
nity to visualize and characterize the particles that make up the calculated particle population statistics. 
Compared to non-optical particle sizing instruments, particle sizing with an image-based device such as the 
FlocARAZI provides the information necessary for training a machine learning algorithm for identifying 
sand within the population of observed particles. The ability to identify sand within the observed particle 
population is a significant advancement for floc research in fluvial environments where both flocs and sand 
are present in suspension. Hence, floc population characteristics can be calculated directly without making 
additional measurements and assumptions that would be necessary in the case of laser diffraction based 
particle sizing instruments or physical water samples where flocs are not observed directly.

We found great success with our particular SVM model over the conditions for which the model was trained 
and tested. Nevertheless, care should be taken when considering applying the model to other conditions. 
The identification of sand with the SVM model relies on the contrast of the identified particles with the 
image background and their geometric properties. Therefore, accurately distinguishing sand from other 
particles depends, to some extent, on the exposure conditions under which the images were taken. These 
can vary as a function of light and camera settings and the concentration and type of material in suspen-
sion. As a result, the SVM model should be checked for accuracy in each new deployment. Doing so would 
require choosing a subset of images and manually identifying mud flocs and sand, and then applying the 
SVM against the new data. If the results were unacceptable, the SVM model could be retrained with the 
addition of the newly obtained data included in the larger training data set. With time, one would expect the 
SVM model to become more and more accurate and less dependent on the exact conditions of the camera 
and light at the time of deployment. However, at the moment we would not recommend the specific SVM 
model we have developed here be used in other locations or on other camera systems without adequate 
testing and updating as needed.

7.  Conclusions
This study presents the system components, packaging, and validation of an inexpensive and compact 
field-deployable camera system designed to image flocs in-situ. The use of an automated image processing 
routine and a method to obtain 3D fractal dimensions from 2D images were combined to estimate SSC of 
flocculated sediment from image data collected with the FlocARAZI. Additionally, a SVM machine learning 
model was introduced to identify sand grains within particle data collected with the FlocARAZI, providing 
the means to calculate floc size characteristics independent of suspended sand.

The FlocARAZI system and image processing code was designed to be a cost effective and easily reproduc-
ible solution for imaging flocs in-situ within the fluvial and marine environment. In accordance with the 
hope that developing a lower cost alternative to particle sizing instruments currently on the market will 
allow for an ever-increasing number of field observations of flocs. As part of this effort, the parts list for the 
FlocARAZI, build instructions, and image processing code are publicly available at https://doi.org/10.5281/
zenodo.5541676.

Future work to improve the characterization of flocs and associated mass fluxes could come from com-
bining data from the FlocARAZI (or similar image-based floc sizing instruments) with other measures of 
a flocs 3D structure and/or density. This could come through 3D imaging and massing of individual flocs 

https://doi.org/10.5281/zenodo.5541676
https://doi.org/10.5281/zenodo.5541676
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and/or through collecting in situ settling velocity. Furthermore, making use of independent measures of 
the mud and sand concentration could help to improve the type and amount of data that can be collected 
with imaging systems.

Appendix A:  Method for Obtaining N f 3
 for Each Floc

Maggi and Winterwerp (2004) developed their model for 3D fractal dimension based on 2D perimeter-based 
fractal dimension using data they generated by projecting 3D objects of specific 3D fractal dimension onto 
2D coordinate planes. Included in their model is a resolution factor, l  , that accounts for the fact that the im-
aged flocs are composed of individual pixels. A hyperbolic like equation was then fit to the data to produce 
a semiempirical relation for mapping 2D fractal dimensions to 3D fractal dimensions.

To use the method, the perimeter-based 2D fractal dimension, 2fE N  , is computed as:

2
log[ ]2
log[ ]f

pN
A� (A1)

where the perimeter, E p , and area, E A , of the individual flocs are in pixels and 2pixelsE  as obtained in the image 
processing output.

Next, the resolution factor,  , defined as the pixel length of one side of a square box surrounding an individ-
ual floc, is computed. However, since most flocs are bound by a rectangular box,  is obtained by calculating 
the side length of a square of the equivalent area of the rectangular box surrounding the floc. That is,

 x yl p p� (A2)

where xE p  and yE p  are the length and width in pixels of the bounding rectangular box around an individual 
floc, both of which are outputs of the processing routine. In creating the mapping function, boundary con-
ditions, ( )E z l  and ( )E k l  , are introduced to account for the 2 (3, ( ))fE N z l  and 3 ( ( ),2)fE N k l  boundaries, respec-
tively. The boundary condition, ( )E z l  , is defined as the 2D fractal dimension of the projection of a box that 
has a resolution of  :




log[4 4]( )
log[ ]

lz l
l� (A3)

( )E k l  is defined simply as a function of ( )E z l  by fitting data points at the boundary 2 2fE N  :

   ( ) ( ( )) ( )[ ( ) 1] 1k l k z l z l z l� (A4)

A function of the form,

 2 2
3

f
f

aN b
N� (A5)

was then solved, resulting in the coefficients E a ,

 
  
  

2

2

2[ ( )] 9 ( )
( ) 9 ( )

[ ( )] 9
k l z l

a l z l
k l
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and E b ,






2

2
2[ ( )] 9 ( )( )

[ ( )] 9
k l z lb l
k l

� (A7)

where 3fE N  is the 3D fractal dimension. The 3D fractal dimension of an individual floc can then be estimated 
by:
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 
3 2

2

( ) for 2
( )f f

f

a lN N
N b l� (A8)

Once 3fE N  is calculated for each floc, using Equations A1–A8, the density of each floc, needed in Equation 6, 
can be calculated from Equation 4.

Data Availability Statement
Data associated with this study is available at https://doi.org/10.5281/zenodo.5541676 or by contacting the 
corresponding author (strom@vt.edu).
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